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Abstract

This paper is an exposition of several results classifying Brieskorn wvarieties,
complex algebraic varieties that arise as the vanishing loci of polynomials of the
form zi* + -+ + z5". I survey results of Hamm, Milnor, Neumann, and others
from the 1960s and 1970s, concluding with a view toward modern developments,

generalizations, and further directions for research.

1 Introduction

While the study of singularities of algebraic curves dates back to the late nineteenth
century and the work of Klein and Brauer, it was given new life in 1961, when David
Mumford discovered the following surprising fact: the boundary K of a small neighbor-
hood of a point p in a complex surface is simply connected if and only if the point is
smooth and K is homoemorphic to the usual 3-sphere. The proximity of this result to
the classical Poincaré conjecture (in particular, the implication that one cannot find a
counterexample to the Poincaré conjecture using complex singularities) initiated a period
of work by Milnor, Brieskorn, Pham, and others investigating the so-called “links” asso-
ciated to complex singularities, along the way discovering many key results that helped
shape the subsequent development of algebraic geometry, algebraic topology, and knot

theory. Milnor’s 1967 work Singular Points of Complex Hypersurfaces brought this field



into the mainstream, introducing several very useful theorems and conjectures that would
drive research for the next several decades. Indeed, this work has proved to be invaluable
in the study of projective curves and complex geometry.

This paper is a survey of many important results thus far, with a view at the end
toward modern techniques and directions for further research. In particular, the focus
will be on so-called Brieskorn manifolds, a special class of link arising from complex
Brieskorn varieties of the form 2{' + 232 + --- 4 2%, with the a; integers greater than
1. In the case n = 2, the link of 0 for a Brieskorn variety {2} + 2 = 0} with p and ¢
coprime is a (p, q)-torus knot. In particular we’ll focus on Milnor’s classification of these
manifolds up to diffeomorphism in the case n = 3 [9]. Properties for higher n will also be

discussed in some detail.

2 Definitions and Basic Notions

A complex algebraic set V- C C™ is the common vanishing locus of a collection of elements
of Clz1, ... z,]. Furthermore, an important result of Hilbert (the so-called “Hilbert basis
theorem”) asserts that any such set is expressible as the vanishing locus of a finite collec-
tion of polynomials.[reference] If a non-empty algebraic set V' cannot be written as the
union of two proper algebraic subsets of C”, it is called a complex algebraic variety or,
for our purposes, simply a variety.

Let V be a variety defined as the vanishing locus of polynomials fi, ..., f,, € Clz1, ..., zp].

We have the following definitions [10].

Definition 2.1. A point x € V is singular if the Jacobian matriz J with entries J;; =
0fi/0z; fails to be injective at x, or in other words if J does not attain its mazimal rank

at x. In this case, T is called a singular point of V, or simply a singularity.

Remark 2.1. Singularities are not dependent on our choice of the f; defining V. If for



instance we append a polynomial fri1 = a1 fi + -+ amfm to {f1,..., fm} and define

Vi={zeC" : fi(z)=0fori=1,...m+1}

with a corresponding Jacobian J', then the m + 1™ row of J' is a linear combination of

the first m rows.

An important note at this point is the smooth manifold structure of real and complex
algebraic varieties away from singularities. Letting ¥(V') denote the set of singularities of
a complex algebraic set V' C C", then V \ ¥(V) is a smooth complex analytic manifold.
This is also true in the real setting after appropriate modifications, and the reader is
referred to [14] for proof and a more detailed treatment.

We will also need to define the link of a point p € V. Informally, the link K of p is the
intersection K = S, NV, where S, is a small sphere of radius € centered at p. In order to
make this definition precise, however, we must be careful with our choice of € to ensure
that V intersects S, transversally. That such an e exists is not entirely obvious. We also
must be careful that a particular choice of € does not affect the topology of K.

These concerns are addressed in the following results of Milnor[10]. Let V be a complex
variety with an isolated singularity (or smooth point) p. Let S (resp. D.) denote the

small sphere (resp. closed disk) of radius € centered at p.

Proposition 2.1. For every sufficiently small €, S. intersects V' in a smooth (possibly
vacuous manifold). Furthermore, the intersection is transverse, in the sense that any
element of the tangent space of a point of VN Sc may be written as the sum of a tangent

vector to V' and a tangent vector to S..

Proposition 2.2. For sufficiently small € the intersection of V.0 D¢ is homeomorphic to

the cone over K =V N Sc. In fact, we have the following homeomorphism of pairs:

(D.,V N D,) ~ Cone(Se, S.NV),



where Se = 0D..

Elegant proofs of these facts can be found in [I0]. The upshot of this discussion is that
the link K of a point is topologically well-defined (up to diffeomorphism) with respect
to shrinking e, provided that € is chosen to be sufficiently small as to satisfy propositions
2.1 and 2.2. We are therefore able to make the following definition, with terminology as

in the above propositions.

Definition 2.2. The link K of a point p € V is the smooth manifold given by K = VNS,

for € sufficiently small.

3 Brieskorn Varieties

An interesting example of complex variety, the analysis of which will form the heart of

this paper, is a Brieskorn variety:
Definition 3.1. A Brieskorn variety V(,, ... 4,) i an algebraic variety defined as the
vanishing locus of the polynomial

Zf‘l +Z§2+...+22n7

with each a; an integer greater than 1.

It is easily checked that a Brieskorn variety has a unique singularity at the origin.

This motivates the following definition:

Definition 3.2. The Brieskorn manifold K, ... a,) s the link of the origin with respect

n

to the Brieskorn variety Viq, .. a,)- That is,

for sufficiently small e.



We will usually simply refer to a Brieskorn variety as V' and the associated Brieskorn
manifold as K, provided the a; are clear from context.

A suggestive example of why Brieskorn manifolds are of particular interest is in the
case n = 2. First recall that a torus knot T is a simple closed curve that lies on the
surface of an unknotted torus T. Each such knot is determined up to ambient isotopy by
a pair of coprime integers (p, ¢), where p specifies the number of times T wraps around T
meridianally, and g the number of times 7" wraps around T longitudinally. A torus knot
specified by such p and ¢ is called a torus knot of type (p,q) or a (p,q)-torus knot, and is
denoted here by T, ). Note in particular that T, ; is ambient isotopic to T} ;.

Returning to the case of Brieskorn manifolds, we have the following proposition, owing

to Brauner in 1928 [2]. Let p and ¢ be coprime positive integers. Then
Proposition 3.1. The Brieskorn manifold K, 4 is a torus knot of type (p,q).

Proof. First note that an unknotted torus T C C? can be specified by

e ={(21,22) €C* : |z1| = |22 =},

for ¢ a positive real constant. Indeed, we can write K up to isotopy as K = {2} =
28y N {]z1]? = |22)® = 2}, so K C Ty, and in particular K is the set of points (z1, 22)
satisfying p - argz; = ¢ - argzs. Hence we may parametrize K as the path [0, 2pgn] — K
via the assignment t — (e”/ P ¢/4), In doing so we ensure that the first coordinate wraps
around the torus ¢ times longitudinally and the second coordinate wraps around the torus
p times meridianally, so indeed K is a (p, g)-torus knot.

O

This is an interesting fact, but it does not reveal much in the way of rich topological
or analytic structure. For this, we turn to the work of Brieskorn and generalizations in
higher dimensions. To motivate this study and indeed to view Brieskorn manifolds as, in

some sense, a natural generalization of torus knots, we have the following [9]



Proposition 3.2. The Brieskorn manifold K4, a,,a5) 1S homeomorphic to the as-fold

cyclic branch covering of S3, with branch locus Ty, 4,

Proof. Writing V' = {z]* + 232 + 2z5° = 0}, consider the projection map = : V' \ {0} —
C2\ {0} given by (21, 22, 23) + (21,22). Then clearly deg(m) = a3, and furthermore we
may cyclically permute the as preimages via the action of Q, the group of az'" roots
of unity. For any w € Q, the action is given explicitly by w - (21, 22, 23) = (21, 22,wz3).
In particular there is a homeomorphism (V \ {0})/Q = C2\ {0}, from which we may
conclude that V '\ {0} is an ag-fold cyclic branched covering of C?\ {0} branched along
{21 + 232 = 0}.

Now consider the action of R* on V' \ {0} given by
—1 —1 —1
t- (Zl, 29, Zg) = (tal 21, t92 29, t%s 23)

for t € RT. Noticing that the RT-orbit of any z € V under this action (transversally)
intersects the unit sphere precisely once, there is a canonical diffeomorphism V' \ {0} ~
RY X K(aya2,05):

In a similar vein there is an action of R* on C?\ {0} given by
t(zl, Zg) = (taflzl, ta;122)’

inducing a canonical diffeomorphism C? \ {0} ~ R? x $3. Finally, observing that the R*
action and  action on V'\ {0} commute, as well as the fact that 7 is R*-equivariant, we
may conclude that K, 4,,44) is an az-fold cyclic branched covering of S 3 branched over

Tal 5@



4 Classifying Brieskorn 3-manifolds

Proposition 3.2. gives a useful topological description of Brieskorn manifolds with 3
parameters, but we can also view them more geometrically. This section is devoted to
studying Milnor’s description of these manifolds [9]. We study his constructions in some
detail, in order to build a foundation of the basic theory, before moving to further results
and more recent develops in §5. To do so we first recall some notions from classical plane
geometry.

There has been much work done on the classical triangle groups, a keystone of the
geometry of the late 19*" and early 20*" centuries. While there is a very beautiful theory
around these objects (cf. [references]), we’ll only build up the facts necessary for our
purposes. Let P be either the Euclidean plane, the hyperbolic plane, or the sphere with

the usual metric.

Definition 4.1. A full triangle group A(p,q,7) is a group of reflections of P specified

by positive integers p,q,r, with presentation
Ala,b,c| a® =b* = * = (ab)? = (bc)" = (ca)? = 1).

The corresponding triangle group T'(p,q,r) < A(p,q,r) is the index two subgroup of

words of even length, which correspond to orientation preserving transformations of P.

The role of (p,q,r) in determining the reflection action of A on P is as follows. For
a fixed full triangle group A(p,q,7), the fundamental domain for the action of A(p,q,r)
on P is a triangle A with interior angles 7/p, /7, 7/q (Figure 1). This action is given by
reflecting over each the edges of A, noting that the composition of reflections over two
adjacent edges is the same as a rotation by twice the angle between those edges. The

geometry of P is determined according to whether
(i) 11) + % + 1 =1, where P is Euclidean;

(ii) % + % + % < 1, where P is hyperbolic; or



<7
(s

Figure 1: A fundamental domain for the action of the full triangle group A(p, ¢, 7).

(iii) % + % + 1 > 1, where P is spherical,

by the Gauss-Bonnet theorem. The orbit of the fundamental domain triangle, of course,

gives a tiling of P, the tiles of which are pairwise disjoint except for shared edges.

4.1 The spherical case

This subsection will give a description of the Brieskorn manifolds K, , ) for which % +
% + % > 1. A classical result is that the Lie group S® with quaternionic group structure is
a double covering of SO(3), the rotation group of S? via the projection 7 : S — SO(3),
with kerm = {1} = Z(S3) (this is Dirac’s “belt trick”). Note also that S® ~ SU(2),
the group of special unitary 2 x 2 matrices. We also have the following famous theorem,
given here without proof, but for which a more detailed treatment can be found in [I].

In the spherical case,

Theorem 4.1. Any finite subgroup of SO(3) is one of the following, for an integer k:
(i) Ck, the cyclic group of rotations by multiples of 2m/k about a line;
(ii) the dihedral group Dy, of symmetries of a regular k-gon, isomorphic to A(2,2,k);

(iii) the tetrahedral group T of 12 rotational symmetries of a tetrahedron, isomorphic to

A(27 37 3);

(iv) the octahedral group O of 24 rotational symmetries of an octahedron, isomorphic to

A(2,3,4); or



(v) the icosahedral group I of 60 rotational symmetries of an icosahedron, isomorphic

to A(2,3,5).

Therefore, an order n subgroup of SO(3) lifts to an order 2n subgroup of S3. These
are the so-called binary polyhedral groups of order 2k, 4k, 24,48, and 120 in comparison
with the list above. We denote such a lifting of a triangle group A(p,q,r) by I'(p, g, 7).

With this in mind, we may prove the following proposition [12].

Proposition 4.1. The only finite subgroups of S® are the double covers of the finite

subgroups of SO(3), and cyclic subgroups of odd order.

Proof. Let H be an arbitrary finite subgroup of S ~ SU(2). If H contains the center
{£1} = Z(SU(2)), then it is the lift of a finite subgroup of SO(3), by definition of the
projection map 7. Hence we may assume that H does not contain £1. Let g € SU(2) be

an element of order 2, of the form

with |21]%+]22|?> = 1 and g? = 1. Then 2; and 2o must satisfy 29(21+21) = Z2(21+%1) = 0,
so either zo = 0 or z; is pure imaginary. But the latter is impossible: writing z; = ¢i for
some t € R, then z? = —t2 < 0, but by the requirement g?> = 1 we must also have that
22 — |z2|? = 1, a contradiction. Therefore we must have 25 = 0 and z; = +1.

Since all elements of H except possibly 1 come in pairs with their inverses, if —1 ¢ H
then |H| is odd. Finally, since H does not contain {£1} = ker 7 the restricted projection
7| is injective, hence H is isomorphic to its image 7(H). Therefore H is isomorphic to
a subgroup of SO(3) of odd order, which must be cyclic by Theorem

O

Of course, SU(2) acts linearly on C? by matrix multiplication. Since elements of SU(2)
are unitary, this action fixes the origin, but is free everywhere else in C? and it is stable

on all spheres centered at the origin. In particular, there is an induced action of any finite



subgroup I' < SU(2) on C2. The space C2/T" of orbits of this action is a complex variety
I'll denote by Vi, which has a unique singularity at the origin [7]. Then the link of the
origin (with € = 1) is the orbit space K = I'/S3, a smooth 3-manifold with universal
cover S® and 7 (K) =T.

Let V¢ denote the vector space of degree d homogeneous polynomials in two complex

variables z; and z3. It’s easy to show that dim Ve =d+ 1, with basis
{28, 28 29, ..., 212871, 28Y.

Now, we say a complex polynomial is I'-invariant if f(z1,22) = f(y(z1,22)) forall y € T’
and all (z1,29) € C2. Let V{* denote the subspace of V" consisting of the I'-invariant
degree d homogeneous polynomials. Indeed, since the product of an element of Vlfl1 and

an element of Vlflz is an element of Vlii1+d2, we have that
o0
Vi =Pwe
q=0

is an N-graded algebra with respect to polynomial multiplication. Now we can give a

description of these Brieskorn manifolds in the spherical case, due to Milnor [9].

Theorem 4.2. Let p,q,r such that p~ + ¢~ ' +r~t > 1. Let I'(p,q,7) =T be a binary
triangle subgroup of SU(2) with commutator subgroup II = [I',T']. Then Vi is generated
by three polynomials f1, f2, f3 of order k/p,k/q, k/r respectively, where k is the order of

T inside SU(2). Furthermore, the f; satisfy the sz’ngleﬂ relation

L+ fi+f5=0.

Moreover, the map from C? to C3 given by z — (f1(2), f2(2), f3(2)) maps the orbit space
C2%/11 homeomorphically to Vip,a,r)- This map is actually a diffeomorphism away from

the origin, and in particular it induces a diffeomorphism between the corresponding links

IThis is shorthand, to say that the ideal of all relations among the f; is generated by this single
relation.

10



SU(2)/II and K

D,q,T)*

We will go through the proof of this theorem in some detail, as structurally it’s very
similar to the hyperbolic case. We first prove several lemmas Let y be a character of T,
i.e. a one-dimensional unitary representation x : I' — U(1) =~ C\ {0}. Let Vlfi’x denote

the space of d-homogeneous polynomials f such that

for all v € T and z € C2. Notice that, by definition, Vlf’l = Vi*. Noting that for f € VFd““
and g € V42x2, fg e Yt xaxz ' hy taking direct sums we obtain a bigraded algebra

which we denote as V", with an identity element 1.

Lemma 4.1. The space Vg’l is a direct sum of the subspaces Vlii’x, where x varies over

all characters of T'.

Proof. The inclusion VFd X C Vlf[l’l is clear, since each character of I' is the trivial map
when restricted to II. For the other inclusion, first note that the abelianization IT'/II acts
linearly (on the right) on Vj} ! since II is a normal subgroup. For arbitrary v € I' and

m €11, let f, denote the polynomial z — f(y(z)). Then

(f)m=(fymy )y = frs

using the fact that the quotient group is abelian. Hence we conclude that f. is actually
II-invariant. Furthermore, since f,, = f,, whenever v; and v, differ by an element of ,
and I'/II is finite and abelian, we have an eigenspace decomposition of Vj} ! with each

eigenspace corresponding to a character of I'/TI, as desired. O

Now we demonstrate a key correspondence between homogeneous polynomials and
characters of I'. Let h € Vlii X for arbitrary d and . Then, by the fundamental theorem
of algebra, h vanishes along d lines (with multiplicity) Lq,..., Lg through the origin in

C2, which are permuted by any v € I'. Furthermore, given d lines through the origin in

11



C? on which I" acts by permutation, there is associated a unique (up to a scalar multiple)
d-homogeneous polynomial f. Then f has the property that f(y(z)) is a scalar multiple

of f(z) for any +, so in particular we may define a character y via

so that f e V"X,

Now, consider the natural action of SU(2) on ]P’(lc, the complex projective line, which
is a topological 2-sphere. Indeed since one may view IP’%: as the space of lines through the
origin in C? and —1 € SU(2) fixes all lines through the origin, the action of any binary
triangle subgroup I'(p, ¢,r) < SU(2) factors through the action of the quotient A(p, g, r)
in SU(2)/{£1} = SO(3).

Let k denote the order of the quotient group A(p, q,r), and let A be the fundamental
domain triangle for the action of A(p,q,r) on P¢. Let P denote the vertex with interior
angle 7 /p, and similarly for @ and R. Each orbit for this action has size k, except for the
orbits containing the vertices of A, which have orbit sizes of k/p, k/q, k/r, for P,Q, and
R respectively.

Now, using the construction outlined above, define f; € Vrk /PX1 for an appropriate
choice of x1 to be a polynomial vanishing on the k/p lines through the origin in C2
corresponding to the orbit of P. In the same manner construct polynomials fo € Vrk /rxz

and f3 € VlfC /%X Note that each f; is defined only up to a multiplicative constant.
Lemma 4.2. The x; : T — U(1) satisfy the relation x| = x3 = x4.

Proof. Let v1,...7; € T be representatives for the cosets of {1} in SU(2). For any linear

function £ : C? — C with (21, 22) = £1(21) + f2(22), we can define a degree k polynomial

Following the construction above, there is a corresponding character xo such that f €

k . . . . . .
ViX0. Since xo varies continuously as we vary /, it’s independent of any one choice of

12



¢. In particular we may specify that ¢(z) vanishes for all z on the line L, C C* which

corresponds to the point P € PL. We thus have x} = x4 = x% = xo0, as desired. O

With this lemma in hand, we may prove the desired relations between the polynomials

f17f2af3-

Lemma 4.3. The polynomials f1, f2, f3 are generators for Vi°* and they satisfy (after

scaling if necessary) the relation f + f§+ fi =0.

Proof. Let arbitrary f € Vlfl "X, Again by the fundamental theorem of algebra, f vanishes
on d lines through the origin in C2, so it has d zeroes in ]P’}C. We may assume that none
of these zeroes are at a vertex of A, since in that case one of the f; must divide f: if for
instance f(P) =0 then fi|f. Hence f vanishes at a point « € P{ in an orbit of size k.
Define a polynomial g = f*+ \fJ with A # 0 chosen so that g(z) = 0. Since g € VX0,
g must vanish precisely at the k points of the orbit of x, by definition. Hence g divides

dt1x
VF

f. Finally, for a polynomial h € we may assume without loss of generality that

h = z1(f + €(d)), for €(d) a degree d homogeneous “error” polynomial. Since € € Vlii Hhx
as well, we may conclude that h is expressible as a linear combination of the f;, and so
f1, f2, f3 generate V.

By the same argument (just taking f = fi), we have that fI is divisible by fV + \fy
for suitable A, so that

f5 = c(fT + Mf3).

By rescaling the f; with suitable constants we may conclude that f¥ + f + f5 = 0, as

desired.

Finally, we can move to the proof of Theorem [4.3]

Proof. Write V(;, 4y = V, and let ¢ : C2?/II — V denote the map given by ¢ : z
(f1(2), f2(2), f3(2)), noting that the image of ¢ is in V since each of the f; is II-invariant.

To see that ¢ is injective, consider points z’ and z” in C? in distinct IT-orbits. Let

13



{m1,...7m} be the elements of II and let g(z) be a polynomial vanishing at 2z’ but non-

zero at every point in the IT-orbit of z”. Let h be the polynomial given by

h(z) = g(m1(2))g(m2(2)) - .. g(mm (2)),

which is IT-invariant by construction. Then h(z’) # h(z”). We may express h as a sum of
homogeneous polynomials and, recalling that the f; generate the bigraded algebra Vi,
at least one of the f; must have f;(2’) # fi(2"), so indeed ¢ is injective.

Now, for any z € C? and half-line L originating at the origin C?, we have a curve in
C3 given by

it (M7 f1(2), 15 fo(2), 877 f3(2)),

where t is a parameter for a real parametrization of L. Clearly the image of any &, isin V;
by Lemmal[£:3] The point in each image curve corresponding to the ¢ intersecting the unit
sphere in C? is a point in K, so we obtain an injective map from S3/II into K. Recalling
that an injective map from a compact manifold to a connected manifold of the same
dimension is always a homeomorphism, we obtain a homeomorphism S%/II = K. Then,
using the cone structure of the variety V proved in Proposition [2.2] we may conclude that
V is homeomorphic to C2/II. Furthermore this is a diffeomorphism away from the origin,
since an injective holomorphic map between complex manifolds of the same dimension is
a diffeomorphism. Since C? \ {0} maps holomorphically into V' \ {0}, this map has no

singularities and the extension S® — K is a diffeomorphism as well. This concludes the

proof of

4.2 The hyperbolic case

This subsection is devoted to the classification of the Brieskorn manifolds K, ;) when

% + % + % < 1, i.e. the hyperbolic case. In particular, we will demonstrate the following

Theorem 4.3. Let I' = I'(, ;) be a hyperbolic triangle subgroup of PSL(2,R), let T be

14



its lifting to the universal covering group éi(?, R), and let IT be the commutator subgroup

of L. Then the orbit space éi(Q,]R)/ﬁ is diffeomorphic to the Brieskorn manifold K, q.ry-

The proof of this theorem follows essentially the same lines as Theorem SO we
will not go into the details of proving the lemmas, instead just defining analogous notions
and giving the overall structure of the argument. More details can be found in [9], but
here we adapt and refine the proof. Taking the place of homogeneous polynomials are
automorphic forms. We first give some definitions. Let H denote the (open) upper half

plane of C.

Definition 4.2. An abelian differential form on H is an expression of the form
f(2)dz, for f holomorphic on H and z the complex variable. More generally, for any
non-negative integer k, a differential form of degree k on H is a an expression of the

form f(z)dz*, where f is holomorphic, z varies over H, and [ varies over K.

We may view a degree k differential form as a complex-valued function in two variables,
specifically an element of the contangent bundle T*H ~ (H x C)*, in which case we write
é(z,w) = f(z)w* (where w = dz).

Recalling that the Lie group PSL(2,R) = SL(2,R)/{£1} is the group of orientation-
preserving automorphisms of H, for any degree k differential form ¢(z,w) and g €

PSL(2,R), we can pull back ¢ along g, using the chain rule to obtain the formula

g (z,w) = f(g(2)) (ff’)kwk

We can generalize this notion by only requiring that k is a rational number, which allows
us to define differential forms of fractional degree. Let C* denote the universal cover of

C* = C\ {0}, which is isomorphic to C as an additive group.

Definition 4.3. Let a an arbitrary rational number. Then a differential form of
fractional degree a on H is a holomorphic function ¢ : H x C* of the form o(z,w) =

f(z)w®, where f is holomorphic on H.

15



In this definition it is understood that w® is meant to be evaluated in @*, then pro-
jected to C*, where it is multiplied by f(z). We also need the following notion for the
proof of Theorem [4.3]

Definition 4.4. A labeled holomorphic map g from H to itself is a holomorphic map
z — g(z) with nowhere vanishing derivative, together with a continuous lifting g of the
derivative from C* to C*. In other words, we require g : H — C* to be a holomorphic

function such that w(g) = dfl—(zz), for m the projection 7 : C* — C*.
The point of this construction is that

Proposition 4.2. The set of labeled biholomorphisms from H to itself is a group isomor-

phic to §]:(2,]R), the universal cover of PSL(2,R).
Proof of this proposition can be found in [9]. We will also need the following

Definition 4.5. Let x : I' — U(1) be a character of I'.  We say the form ¢ is x-

automorphic if

for every v € T.

For the special case xy = 1, in which case we have v*(¢) = ¢, we say ¢ is I'-automorphic.
Analogously to the spherical case, let AQ* denote the space of y-automorphic forms
of degree a, and A{ the space of I-automorphic forms. Again taking direct sums we
obtain bigraded algebras Af and AR of automorphic forms and y-automorphic forms,
respectively. Let f(p,q,r) = T denote the extended triangle group, defined as the lift
of T'(p, q,r) to the universal cover ﬁ(Q,]R), and as before let II denote the commutator
subgroup of L.

Analogously to Lemma we have

Lemma 4.4. The vector space Aqﬁ can be decomposed as a direct sum of the subspaces

A%’X as x varies over all characters of 5. Therefore

i =@y

16



The proof of Lemma [{:4] is very similar to the proof of Lemma [£.I] Similarly to the
spherical case, we want to show that the algebra of I-invariant automorphic forms has
three generators satisfying the relations of the corresponding Brieskorn variety V(, ;-
To this end, let v1,7v2,7v3 € f, with v; acting on H via a rotation through P, 5 rotation
through @, and 3 rotation through R. In much the same manner as above, it can be
shown that these elements generate T and satisfy the relations 7 = 75 = 74 = y19973.

That is, there is a presentation for r given by

L= (y1,72,:73 |7 =7 =75 =717273)-

As before we construct a special character yg : r— U(1) by defining it on the generators
and extending linearly. Let s = w/A, where A is the area of the fundamental triangle A,

which we can compute explicitly as k = (1+p~! + ¢~ +r~1)~!. We define

Xo(71) = exp(2mis/p), Xo(72) = exp(2mis/q), Xo(73) = exp(2mis/r).

In particular it’s quite easy to show that, for a differential form ¢ € A%’X, if ¢ is nonvan-
ishing at the vertices of A then a divides s and x = XS/S (cf. [9] Lemma 6.1). With this in
hand, we can try to understand the generators of the algebra of I-invariant automorphic
forms. In the case of the sphere, we did this by considering the orbits of the vertices of A
— each orbit was uniquely determined by a set of I'-invariant lines through the origin in
C? which, up to scaling, uniquely determined a polynomial fﬂ and a character y; such
that f; was y;-invariant. Analogously, Milnor proves in the hyperbolic case that A%’XD
contains exactly one (up to scaling) automorphic form that vanishes at any given point
x € H and, since it is automorphic, therefore vanishes on the entire T orbit of # in H.
There are three exceptional orbits, at the vertices of A. For instance, the automorphic

form ¢ vanishing at the vertex P is exhibited to have a p-fold root, i.e. an automorphic

form ¢y such that ¢! = ¢, and, by similar reasoning as in Lemma [4.2] he shows that the

2The vertex P corresponded to f1, @ to f2, and R to f3.
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associated character x; satisfies x] = xo. The upshot here is that, just as in the spherical

case, the T orbit of each vertex of A uniquely determines, up to scaling, an automorphic

form of T and an associated character satisfying the relations of the Brieskorn variety.
To summarize this discussion: the algebra A%’* is isomorphic to the algebra A%’ and

is generated by the special forms
g1 e AP gpe ATV gy e AT,

with associated characters satisfying x} = x4 = x5 = Xo- Each ¢; vanishes precisely at

each point of the T orbit of its corresponding vertex, and they satisfy
¢+ 95+ ¢5 =0,

by essentially the same reasoning as [£.3] Each ¢; is an element of the cotangent bundle
Hom(H x C*, C), so we can define a map ® : HxC* — C3 via ® : z — (61(2), d2(2), d3(2))
such that the image of ® is contained in V{; 4 \ {0}. Using some facts about SL(2,R)
and complex manifolds, we actually obtain that ® induces a diffeomorphism between any
element of the orbit space S,’\E(Z,R)/ﬁ and K, 4 ), thus furnishing justification for
It remains only to study the Euclidean case, when p~! + ¢! +r~! = 1. Using
suitably adapted techniques as in the above cases, Milnor showed that Euclidean Brieskorn
manifolds are diffeomorphic to the quotient of the universal cover nilpotent Lie group of
upper triangular real 3 X 3 matrices by a suitable discrete subgroup [9]. Summarizing

these three sections, we thus obtain the following classification of Brieskorn 3-manifolds:

Proposition 4.3. Let K, ,.) be a Brieskorn 3-manifold. Then K is diffeomorphic to
the orbit space G/II, where G is the universal cover of either SO(3),PSL(2,R), or the
nilpotent Lie group of 3 X 3 upper triangular matrices and I1 < G is a discrete subgroup,

determined by whether p~' +q¢ ' +r~ 1 >1,<1, or =1.
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5 Further developments

5.1 The general case

We first consider Brieskorn manifolds with more than three parameters. The classification
for these manifolds is almost precisely the same as for the three-parameter version, so in
some sense the three-parameter version is the most illustrative and interesting. Because
of this, we will only state the results with some discussion, and give references for more
details.

Let V' = V(4,,....a) be a Brieskorn variety with associated Brieskorn manifold K =
K(a,,....an)- Then K is a smooth 3-manifold determined up to diffeomorphism by the a;
[6]. Let n > 3, and fix a subgroup A(ay,...,a,) of PSL(2,R), with I'(ay,...,a,) =T
denoting the lift of A(ay,...,a,) to SE(Q,]R), and as before let II = [I',T]. Now we

generalize slightly our definition of Brieskorn varieties to varieties of the form
Qi 28T =0,i=1,..,n—2
VA — {z ceC” - ailzillJr +Qinz,, i n }

for an (n — 2 x n) matrix A = (as;).

The following theorem is due to Neumann [11].
Theorem 5.1. Consider the natural action of IL on HxC*. Then the orbit space HX(E*/H
is biholomorphically isomorphic to Vs — {0} for a suitably chosen A. Also, SL(2,R) is
diffeomorphic to K. These isomorphisms are equivariant with respect to various natural

group actions, described below.

Borrowing notation from [I1], let
C={(z1,...,2,) € (PE)" : x; # x; for i # j}/Aut(PR),

where as before IP’(l: denotes the Riemann sphere. We may interpret € as the set of
isomorphism classes of ordered n-tuples of distinct points of the Riemann sphere, denoting

each element as a pair (in the sense of inclusion) (S, (z1,...,2,)), where S is any space
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biholomorphically equivalent to P%. As discussed in §4 for the hyperbolic case, the triangle

subgroup A(aq,...,a,) has a presentation

(i [ == =m )

Letting C; be the conjugacy class of ~;, we note that the C; are distinct and contain all
non-identity finite order elements of A(ay,...,a,). For a fixed ordering of the C; there is
a classical result that the subgroup A(aq,...,a,) < PSL(2,R) is determined up to conju-
gation by elements of PSL(2,R) by the pair (H/A(a1,...,a4)/), (r1,...,7)) € €, where
the r; are the ramification points of the quotient projection 7 : H — H/A(aq,...,an)/),
i.e. the images of fixed /branch points. The space € is sometimes known as the “labelled
Teichmiiller Moduli space”; for more discussion compare with [T1].

Now we address the “natural group actions” referred to in Theorem Let H =
II(Z/a;). Then there is a natural action of H on Vy(ay,...,ay) given by termwise mul-
tiplication. We take the product with the left-multiplication action of C* to obtain
an (H x C*) action on V4. Neumann shows that V4 can be classified up to (H x C*)-
equivariant biholomorphism by a unique element of €, written (P&, (A1, ..., Ap—3,1,0,00))

for elements A\; € C\ {0,1}. This discussion leads to the following theorem.

Theorem 5.2. Let Aaq,...,a,) < PSL(2,R), and let the corresponding (n — 2) x n

matrixz A have the form

1 01 XM
A= . : :
1 1 A3
0 11 1

Then (H/A(aq, ... an), (r1,...mn)) = (P&, (A1, ...y Anes, 1,0,00)) in €.

Neumann also shows that any such matrix A can be put in the form of Theorem [5.2]
without changing the equivariant (with respect to the group action given above) isomor-

phism type of V4, so indeed this completes the classification of Brieskorn 3-manifolds.
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5.2 Directions for further research

Brieskorn manifolds are of considerable interest to topologists and geometers alike, owing
in part to the fact that they provide many examples of exotic spheres (sometimes called
topological spheres), n—manifolds which are homeomorphic but not diffeomorphic to the
Euclidean n-sphere. This is perhaps why these manifolds are attributed to Brieskorn,
who found in 1966 that the Brieskorn manifolds M 222 6x—1) for k € 1,...,28 furnish
all smooth structures on the 7-sphere, or in other words that these Brieskorn manifolds
classify all diffeomorphism classes of S7. [3]

Also of interest are the Brieskorn homology spheres, a class of Brieskorn manifolds
Vip,q,ry for which p,q,r are relatively prime. These are 3-spheres with isomorphic ho-
mology groups to the usual 3-sphere, and are in some sense a generalization of the torus
knots exhibited in §3. An open problem of some interest is the following, conjectured by

Gompf in 2013 [5].

Conjecture 5.1. No nontrivial Brieskorn homology sphere admits a psuedoconver em-

bedding into C2,

The pseudoconverness condition is not relevant for this writing, apart from the fact
that it is a rather strong condition (for example, it is much stronger than smoothness)
to impose, especially seeing as (Gompf notes) many Brieskorn homology spheres do not
embed even smoothly into C2. Still, there have been several partial results in the direc-
tion of the affirmative answer to this conjecture (see for example [§] for an account of
recent developments). This points to these Brieskorn manifolds being objects of partic-
ular interest and, even more, the slightly more general notion of Seifert-fibered homology
spheres are objects of principal interest in the study of Heegaard Floer homology and
more generally in low-dimensional topology ([13], []).

More generally, these Brieskorn manifolds provide the most digestible example of the
deep topological insight that can be gained from analyzing singularities of algebraic vari-
eties. In particular, the study of canonical and terminal singularities of projective varieties

is of great interest in algebraic geometry and specifically the minimal model program, the
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project to, roughly speaking, classify projective algebraic varieties (i.e. irreducible alge-
braic subsets of PZ) up to birational equivalence. My goal for research this summer, and
for my senior thesis, is to begin studying these singularities of projective varieties from a
more algebraic viewpoint (in contrast to the topological viewpoint of this paper), and in

general to build the foundations for further study in algebraic geometry.
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