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Abstract

This paper is an exposition of several results classifying Brieskorn varieties,

complex algebraic varieties that arise as the vanishing loci of polynomials of the

form za1
1 + · · · + zan

n . I survey results of Hamm, Milnor, Neumann, and others

from the 1960s and 1970s, concluding with a view toward modern developments,

generalizations, and further directions for research.

1 Introduction

While the study of singularities of algebraic curves dates back to the late nineteenth

century and the work of Klein and Brauer, it was given new life in 1961, when David

Mumford discovered the following surprising fact: the boundary K of a small neighbor-

hood of a point p in a complex surface is simply connected if and only if the point is

smooth and K is homoemorphic to the usual 3-sphere. The proximity of this result to

the classical Poincaré conjecture (in particular, the implication that one cannot find a

counterexample to the Poincaré conjecture using complex singularities) initiated a period

of work by Milnor, Brieskorn, Pham, and others investigating the so-called “links” asso-

ciated to complex singularities, along the way discovering many key results that helped

shape the subsequent development of algebraic geometry, algebraic topology, and knot

theory. Milnor’s 1967 work Singular Points of Complex Hypersurfaces brought this field
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into the mainstream, introducing several very useful theorems and conjectures that would

drive research for the next several decades. Indeed, this work has proved to be invaluable

in the study of projective curves and complex geometry.

This paper is a survey of many important results thus far, with a view at the end

toward modern techniques and directions for further research. In particular, the focus

will be on so-called Brieskorn manifolds, a special class of link arising from complex

Brieskorn varieties of the form za1
1 + za2

2 + · · · + zan
n , with the ai integers greater than

1. In the case n = 2, the link of 0 for a Brieskorn variety {zp1 + zq2 = 0} with p and q

coprime is a (p, q)-torus knot. In particular we’ll focus on Milnor’s classification of these

manifolds up to diffeomorphism in the case n = 3 [9]. Properties for higher n will also be

discussed in some detail.

2 Definitions and Basic Notions

A complex algebraic set V ⊂ Cn is the common vanishing locus of a collection of elements

of C[z1, . . . zn]. Furthermore, an important result of Hilbert (the so-called “Hilbert basis

theorem”) asserts that any such set is expressible as the vanishing locus of a finite collec-

tion of polynomials.[reference] If a non-empty algebraic set V cannot be written as the

union of two proper algebraic subsets of Cn, it is called a complex algebraic variety or,

for our purposes, simply a variety.

Let V be a variety defined as the vanishing locus of polynomials f1, . . . , fm ∈ C[z1, . . . , zn].

We have the following definitions [10].

Definition 2.1. A point x ∈ V is singular if the Jacobian matrix J with entries Jij =

∂fi/∂zj fails to be injective at x, or in other words if J does not attain its maximal rank

at x. In this case, x is called a singular point of V, or simply a singularity.

Remark 2.1. Singularities are not dependent on our choice of the fi defining V . If for
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instance we append a polynomial fm+1 = a1f1 + · · ·+ amfm to {f1, . . . , fm} and define

V ′ = {z ∈ Cn : fi(z) = 0 for i = 1, . . .m+ 1}

with a corresponding Jacobian J ′, then the m + 1th row of J ′ is a linear combination of

the first m rows.

An important note at this point is the smooth manifold structure of real and complex

algebraic varieties away from singularities. Letting Σ(V ) denote the set of singularities of

a complex algebraic set V ⊂ Cn, then V \ Σ(V ) is a smooth complex analytic manifold.

This is also true in the real setting after appropriate modifications, and the reader is

referred to [14] for proof and a more detailed treatment.

We will also need to define the link of a point p ∈ V . Informally, the link K of p is the

intersection K = Sϵ ∩ V , where Sϵ is a small sphere of radius ϵ centered at p. In order to

make this definition precise, however, we must be careful with our choice of ϵ to ensure

that V intersects Sϵ transversally. That such an ϵ exists is not entirely obvious. We also

must be careful that a particular choice of ϵ does not affect the topology of K.

These concerns are addressed in the following results of Milnor[10]. Let V be a complex

variety with an isolated singularity (or smooth point) p. Let Sϵ (resp. Dϵ) denote the

small sphere (resp. closed disk) of radius ϵ centered at p.

Proposition 2.1. For every sufficiently small ϵ, Sϵ intersects V in a smooth (possibly

vacuous manifold). Furthermore, the intersection is transverse, in the sense that any

element of the tangent space of a point of V ∩ Sϵ may be written as the sum of a tangent

vector to V and a tangent vector to Sϵ.

Proposition 2.2. For sufficiently small ϵ the intersection of V ∩Dϵ is homeomorphic to

the cone over K = V ∩ Sϵ. In fact, we have the following homeomorphism of pairs:

(Dϵ, V ∩Dϵ) ≃ Cone(Sϵ, Sϵ ∩ V ),
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where Sϵ = ∂Dϵ.

Elegant proofs of these facts can be found in [10]. The upshot of this discussion is that

the link K of a point is topologically well-defined (up to diffeomorphism) with respect

to shrinking ϵ, provided that ϵ is chosen to be sufficiently small as to satisfy propositions

2.1 and 2.2. We are therefore able to make the following definition, with terminology as

in the above propositions.

Definition 2.2. The link K of a point p ∈ V is the smooth manifold given by K = V ∩Sϵ,

for ϵ sufficiently small.

3 Brieskorn Varieties

An interesting example of complex variety, the analysis of which will form the heart of

this paper, is a Brieskorn variety:

Definition 3.1. A Brieskorn variety V(a1,...,an) is an algebraic variety defined as the

vanishing locus of the polynomial

za1
1 + za2

2 + · · ·+ zan
n ,

with each ai an integer greater than 1.

It is easily checked that a Brieskorn variety has a unique singularity at the origin.

This motivates the following definition:

Definition 3.2. The Brieskorn manifold K(a1,...,an) is the link of the origin with respect

to the Brieskorn variety V(a1,...,an). That is,

K(a1,...,an) = V(a1,...,an) ∩ Sϵ,

for sufficiently small ϵ.
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We will usually simply refer to a Brieskorn variety as V and the associated Brieskorn

manifold as K, provided the ai are clear from context.

A suggestive example of why Brieskorn manifolds are of particular interest is in the

case n = 2. First recall that a torus knot T is a simple closed curve that lies on the

surface of an unknotted torus T. Each such knot is determined up to ambient isotopy by

a pair of coprime integers (p, q), where p specifies the number of times T wraps around T

meridianally, and q the number of times T wraps around T longitudinally. A torus knot

specified by such p and q is called a torus knot of type (p, q) or a (p,q)-torus knot, and is

denoted here by T(p,q). Note in particular that Tp,q is ambient isotopic to Tq,p.

Returning to the case of Brieskorn manifolds, we have the following proposition, owing

to Brauner in 1928 [2]. Let p and q be coprime positive integers. Then

Proposition 3.1. The Brieskorn manifold K(p,q) is a torus knot of type (p, q).

Proof. First note that an unknotted torus T ⊂ C2 can be specified by

Tc = {(z1, z2) ∈ C2 : |z1| = |z2| = c},

for c a positive real constant. Indeed, we can write K up to isotopy as K = {zp1 =

zq2} ∩ {|z1|2 = |z2|2 = 2}, so K ⊂ T1, and in particular K is the set of points (z1, z2)

satisfying p · argz1 = q · argz2. Hence we may parametrize K as the path [0, 2pqπ] → K

via the assignment t 7→ (eit/p, eit/q). In doing so we ensure that the first coordinate wraps

around the torus q times longitudinally and the second coordinate wraps around the torus

p times meridianally, so indeed K is a (p, q)-torus knot.

This is an interesting fact, but it does not reveal much in the way of rich topological

or analytic structure. For this, we turn to the work of Brieskorn and generalizations in

higher dimensions. To motivate this study and indeed to view Brieskorn manifolds as, in

some sense, a natural generalization of torus knots, we have the following [9]
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Proposition 3.2. The Brieskorn manifold K(a1,a2,a3) is homeomorphic to the a3-fold

cyclic branch covering of S3, with branch locus Ta1,a2 .

Proof. Writing V = {za1
1 + za2

2 + za3
3 = 0}, consider the projection map π : V \ {0} →

C2 \ {0} given by (z1, z2, z3) 7→ (z1, z2). Then clearly deg(π) = a3, and furthermore we

may cyclically permute the a3 preimages via the action of Ω, the group of a3
th roots

of unity. For any ω ∈ Ω, the action is given explicitly by ω · (z1, z2, z3) = (z1, z2, ωz3).

In particular there is a homeomorphism (V \ {0})/Ω ∼−→ C2 \ {0}, from which we may

conclude that V \ {0} is an a3-fold cyclic branched covering of C2 \ {0} branched along

{za1
1 + za2

2 = 0}.

Now consider the action of R+ on V \ {0} given by

t · (z1, z2, z3) = (ta
−1
1 z1, t

a−1
2 z2, t

a−1
3 z3)

for t ∈ R+. Noticing that the R+-orbit of any z ∈ V under this action (transversally)

intersects the unit sphere precisely once, there is a canonical diffeomorphism V \ {0} ≃

R+ ×K(a1,a2,a3).

In a similar vein there is an action of R+ on C2 \ {0} given by

t(̇z1, z2) = (ta
−1
1 z1, t

a−1
2 z2),

inducing a canonical diffeomorphism C2 \ {0} ≃ R3 × S3. Finally, observing that the R+

action and Ω action on V \ {0} commute, as well as the fact that π is R+-equivariant, we

may conclude that K(a1,a2,a3) is an a3-fold cyclic branched covering of S3, branched over

Ta1,a2
.
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4 Classifying Brieskorn 3-manifolds

Proposition 3.2. gives a useful topological description of Brieskorn manifolds with 3

parameters, but we can also view them more geometrically. This section is devoted to

studying Milnor’s description of these manifolds [9]. We study his constructions in some

detail, in order to build a foundation of the basic theory, before moving to further results

and more recent develops in §5. To do so we first recall some notions from classical plane

geometry.

There has been much work done on the classical triangle groups, a keystone of the

geometry of the late 19th and early 20th centuries. While there is a very beautiful theory

around these objects (cf. [references]), we’ll only build up the facts necessary for our

purposes. Let P be either the Euclidean plane, the hyperbolic plane, or the sphere with

the usual metric.

Definition 4.1. A full triangle group ∆(p, q, r) is a group of reflections of P specified

by positive integers p, q, r, with presentation

∆⟨a, b, c | a2 = b2 = c2 = (ab)p = (bc)r = (ca)q = 1⟩.

The corresponding triangle group Γ(p, q, r) ≤ ∆(p, q, r) is the index two subgroup of

words of even length, which correspond to orientation preserving transformations of P .

The role of (p, q, r) in determining the reflection action of ∆ on P is as follows. For

a fixed full triangle group ∆(p, q, r), the fundamental domain for the action of ∆(p, q, r)

on P is a triangle ∆ with interior angles π/p, π/r, π/q (Figure 1). This action is given by

reflecting over each the edges of ∆, noting that the composition of reflections over two

adjacent edges is the same as a rotation by twice the angle between those edges. The

geometry of P is determined according to whether

(i) 1
p + 1

q + 1
r = 1, where P is Euclidean;

(ii) 1
p + 1

q + 1
r < 1, where P is hyperbolic; or
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Figure 1: A fundamental domain for the action of the full triangle group ∆(p, q, r).

(iii) 1
p + 1

q + 1
r > 1, where P is spherical,

by the Gauss-Bonnet theorem. The orbit of the fundamental domain triangle, of course,

gives a tiling of P , the tiles of which are pairwise disjoint except for shared edges.

4.1 The spherical case

This subsection will give a description of the Brieskorn manifolds K(p,q,r) for which
1
p +

1
q +

1
r > 1. A classical result is that the Lie group S3 with quaternionic group structure is

a double covering of SO(3), the rotation group of S2 via the projection π : S3 → SO(3),

with kerπ = {±1} = Z(S3) (this is Dirac’s “belt trick”). Note also that S3 ≃ SU(2),

the group of special unitary 2× 2 matrices. We also have the following famous theorem,

given here without proof, but for which a more detailed treatment can be found in [1].

In the spherical case,

Theorem 4.1. Any finite subgroup of SO(3) is one of the following, for an integer k:

(i) Ck, the cyclic group of rotations by multiples of 2π/k about a line;

(ii) the dihedral group Dk of symmetries of a regular k-gon, isomorphic to ∆(2, 2, k);

(iii) the tetrahedral group T of 12 rotational symmetries of a tetrahedron, isomorphic to

∆(2, 3, 3);

(iv) the octahedral group O of 24 rotational symmetries of an octahedron, isomorphic to

∆(2, 3, 4); or
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(v) the icosahedral group I of 60 rotational symmetries of an icosahedron, isomorphic

to ∆(2, 3, 5).

Therefore, an order n subgroup of SO(3) lifts to an order 2n subgroup of S3. These

are the so-called binary polyhedral groups of order 2k, 4k, 24, 48, and 120 in comparison

with the list above. We denote such a lifting of a triangle group ∆(p, q, r) by Γ(p, q, r).

With this in mind, we may prove the following proposition [12].

Proposition 4.1. The only finite subgroups of S3 are the double covers of the finite

subgroups of SO(3), and cyclic subgroups of odd order.

Proof. Let H be an arbitrary finite subgroup of S3 ≃ SU(2). If H contains the center

{±1} = Z(SU(2)), then it is the lift of a finite subgroup of SO(3), by definition of the

projection map π. Hence we may assume that H does not contain ±1. Let g ∈ SU(2) be

an element of order 2, of the form

g =

 z1 z2

−z2 z1


with |z1|2+|z2|2 = 1 and g2 = 1. Then z1 and z2 must satisfy z2(z1+z1) = z2(z1+z1) = 0,

so either z2 = 0 or z1 is pure imaginary. But the latter is impossible: writing z1 = ti for

some t ∈ R, then z21 = −t2 ≤ 0, but by the requirement g2 = 1 we must also have that

z21 − |z2|2 = 1, a contradiction. Therefore we must have z2 = 0 and z1 = ±1.

Since all elements of H except possibly 1 come in pairs with their inverses, if −1 ̸∈ H

then |H| is odd. Finally, since H does not contain {±1} = kerπ the restricted projection

π|H is injective, hence H is isomorphic to its image π(H). Therefore H is isomorphic to

a subgroup of SO(3) of odd order, which must be cyclic by Theorem 4.1.

Of course, SU(2) acts linearly on C2 by matrix multiplication. Since elements of SU(2)

are unitary, this action fixes the origin, but is free everywhere else in C2 and it is stable

on all spheres centered at the origin. In particular, there is an induced action of any finite
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subgroup Γ ≤ SU(2) on C2. The space C2/Γ of orbits of this action is a complex variety

I’ll denote by VΓ, which has a unique singularity at the origin [7]. Then the link of the

origin (with ϵ = 1) is the orbit space K = Γ/S3, a smooth 3-manifold with universal

cover S3 and π1(K) = Γ.

Let V d denote the vector space of degree d homogeneous polynomials in two complex

variables z1 and z2. It’s easy to show that dimV d = d+ 1, with basis

{zd1 , zd−1
1 z2, . . . , z1z

d−1
2 , zd2}.

Now, we say a complex polynomial is Γ-invariant if f(z1, z2) = f(γ(z1, z2)) for all γ ∈ Γ

and all (z1, z2) ∈ C2. Let V n
Γ denote the subspace of V n consisting of the Γ-invariant

degree d homogeneous polynomials. Indeed, since the product of an element of V d1

Γ and

an element of V d2

Γ is an element of V d1+d2

Γ , we have that

V ∗
Γ =

∞⊕
q=0

V q
Γ

is an N-graded algebra with respect to polynomial multiplication. Now we can give a

description of these Brieskorn manifolds in the spherical case, due to Milnor [9].

Theorem 4.2. Let p, q, r such that p−1 + q−1 + r−1 > 1. Let Γ(p, q, r) = Γ be a binary

triangle subgroup of SU(2) with commutator subgroup Π = [Γ,Γ]. Then V ∗
Γ is generated

by three polynomials f1, f2, f3 of order k/p, k/q, k/r respectively, where k is the order of

Γ inside SU(2). Furthermore, the fi satisfy the single1 relation

fp
1 + fq

2 + fr
3 = 0.

Moreover, the map from C2 to C3 given by z 7→ (f1(z), f2(z), f3(z)) maps the orbit space

C2/Π homeomorphically to V(p,q,r). This map is actually a diffeomorphism away from

the origin, and in particular it induces a diffeomorphism between the corresponding links

1This is shorthand, to say that the ideal of all relations among the fi is generated by this single
relation.
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SU(2)/Π and K(p,q,r).

We will go through the proof of this theorem in some detail, as structurally it’s very

similar to the hyperbolic case. We first prove several lemmas Let χ be a character of Γ,

i.e. a one-dimensional unitary representation χ : Γ → U(1) ≃ C \ {0}. Let V d,χ
Γ denote

the space of d-homogeneous polynomials f such that

f(γ(z)) = χ(γ)f(z)

for all γ ∈ Γ and z ∈ C2. Notice that, by definition, V ∗,1
Γ = V ∗

Γ . Noting that for f ∈ V d1,χ1

Γ

and g ∈ V d2,χ2
γ , fg ∈ V d1+d2,χ1χ2

Γ , by taking direct sums we obtain a bigraded algebra

which we denote as V ∗,∗
Γ , with an identity element 1.

Lemma 4.1. The space V d,1
Π is a direct sum of the subspaces V d,χ

Γ , where χ varies over

all characters of Γ.

Proof. The inclusion V d,χ
Γ ⊂ V d,1

Π is clear, since each character of Γ is the trivial map

when restricted to Π. For the other inclusion, first note that the abelianization Γ/Π acts

linearly (on the right) on V n,1
Π , since Π is a normal subgroup. For arbitrary γ ∈ Γ and

π ∈ Π, let fγ denote the polynomial z 7→ f(γ(z)). Then

(fγ)π = (f(γπγ−1))γ = fγ ,

using the fact that the quotient group is abelian. Hence we conclude that fγ is actually

Π-invariant. Furthermore, since fγ1
= fγ2

whenever γ1 and γ2 differ by an element of π,

and Γ/Π is finite and abelian, we have an eigenspace decomposition of V n,1
Π with each

eigenspace corresponding to a character of Γ/Π, as desired.

Now we demonstrate a key correspondence between homogeneous polynomials and

characters of Γ. Let h ∈ V d,χ
Γ for arbitrary d and χ. Then, by the fundamental theorem

of algebra, h vanishes along d lines (with multiplicity) L1, . . . , Ld through the origin in

C2, which are permuted by any γ ∈ Γ. Furthermore, given d lines through the origin in
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C2 on which Γ acts by permutation, there is associated a unique (up to a scalar multiple)

d-homogeneous polynomial f . Then f has the property that f(γ(z)) is a scalar multiple

of f(z) for any γ, so in particular we may define a character χ via

χ(γ) =
f(γ(z))

f(z)
,

so that f ∈ V n,χ
Γ .

Now, consider the natural action of SU(2) on P1
C, the complex projective line, which

is a topological 2-sphere. Indeed since one may view P1
C as the space of lines through the

origin in C2 and −1 ∈ SU(2) fixes all lines through the origin, the action of any binary

triangle subgroup Γ(p, q, r) ≤ SU(2) factors through the action of the quotient ∆(p, q, r)

in SU(2)/{±1} = SO(3).

Let k denote the order of the quotient group ∆(p, q, r), and let ∆ be the fundamental

domain triangle for the action of ∆(p, q, r) on P1
C. Let P denote the vertex with interior

angle π/p, and similarly for Q and R. Each orbit for this action has size k, except for the

orbits containing the vertices of ∆, which have orbit sizes of k/p, k/q, k/r, for P,Q, and

R respectively.

Now, using the construction outlined above, define f1 ∈ V
k/p,χ1

Γ for an appropriate

choice of χ1 to be a polynomial vanishing on the k/p lines through the origin in C2

corresponding to the orbit of P . In the same manner construct polynomials f2 ∈ V
k/r,χ2

Γ

and f3 ∈ V
k/q,χ3

Γ . Note that each fi is defined only up to a multiplicative constant.

Lemma 4.2. The χi : Γ → U(1) satisfy the relation χp
1 = χq

2 = χr
3.

Proof. Let γ1, . . . γk ∈ Γ be representatives for the cosets of {±1} in SU(2). For any linear

function ℓ : C2 → C with ℓ(z1, z2) = ℓ1(z1) + ℓ2(z2), we can define a degree k polynomial

f(z) = ℓ(γ1(z)) · · · · · ℓ(γk(z)).

Following the construction above, there is a corresponding character χ0 such that f ∈

V k,χ0

Γ . Since χ0 varies continuously as we vary ℓ, it’s independent of any one choice of
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ℓ. In particular we may specify that ℓ(z) vanishes for all z on the line Lp ⊂ C2 which

corresponds to the point P ∈ P1
C. We thus have χp

1 = χq
2 = χr

3 = χ0, as desired.

With this lemma in hand, we may prove the desired relations between the polynomials

f1, f2, f3.

Lemma 4.3. The polynomials f1, f2, f3 are generators for V ∗,∗
Γ and they satisfy (after

scaling if necessary) the relation fp
1 + fq

2 + fr
3 = 0.

Proof. Let arbitrary f ∈ V d,χ
Γ . Again by the fundamental theorem of algebra, f vanishes

on d lines through the origin in C2, so it has d zeroes in P1
C. We may assume that none

of these zeroes are at a vertex of ∆, since in that case one of the fi must divide f : if for

instance f(P ) = 0 then f1|f . Hence f vanishes at a point x ∈ P1
C in an orbit of size k.

Define a polynomial g = fp
1 +λfq

2 with λ ̸= 0 chosen so that g(x) = 0. Since g ∈ V k,χ0

Γ ,

g must vanish precisely at the k points of the orbit of x, by definition. Hence g divides

f . Finally, for a polynomial h ∈ V d+1,χ
Γ we may assume without loss of generality that

h = z1(f + ϵ(d)), for ϵ(d) a degree d homogeneous “error” polynomial. Since ϵ ∈ V d+1,χ
Γ

as well, we may conclude that h is expressible as a linear combination of the fi, and so

f1, f2, f3 generate V ∗,∗
Γ .

By the same argument (just taking f = fr
3 ), we have that fr

3 is divisible by fp
1 + λfq

2

for suitable λ, so that

fr
3 = c(fp

1 + λfq
2 ).

By rescaling the fi with suitable constants we may conclude that fp
1 + fq

2 + fr
3 = 0, as

desired.

Finally, we can move to the proof of Theorem 4.3.

Proof. Write V(p,q,r) = V , and let ϕ : C2/Π → V denote the map given by ϕ : z 7→

(f1(z), f2(z), f3(z)), noting that the image of ϕ is in V since each of the fi is Π-invariant.

To see that ϕ is injective, consider points z′ and z′′ in C2 in distinct Π-orbits. Let
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{π1, . . . πm} be the elements of Π and let g(z) be a polynomial vanishing at z′ but non-

zero at every point in the Π-orbit of z′′. Let h be the polynomial given by

h(z) = g(π1(z))g(π2(z)) . . . g(πm(z)),

which is Π-invariant by construction. Then h(z′) ̸= h(z′′). We may express h as a sum of

homogeneous polynomials and, recalling that the fi generate the bigraded algebra V ∗,∗
Γ ,

at least one of the fi must have fi(z
′) ̸= fi(z

′′), so indeed ϕ is injective.

Now, for any z ∈ C2 and half-line L originating at the origin C2, we have a curve in

C3 given by

ξz : t 7→ (tk/pf1(z), t
k/qf2(z), t

k/rf3(z)),

where t is a parameter for a real parametrization of L. Clearly the image of any ξz is in V,

by Lemma 4.3. The point in each image curve corresponding to the t intersecting the unit

sphere in C2 is a point in K, so we obtain an injective map from S3/Π into K. Recalling

that an injective map from a compact manifold to a connected manifold of the same

dimension is always a homeomorphism, we obtain a homeomorphism S3/Π
∼−→ K. Then,

using the cone structure of the variety V proved in Proposition 2.2 we may conclude that

V is homeomorphic to C2/Π. Furthermore this is a diffeomorphism away from the origin,

since an injective holomorphic map between complex manifolds of the same dimension is

a diffeomorphism. Since C2 \ {0} maps holomorphically into V \ {0}, this map has no

singularities and the extension S3 → K is a diffeomorphism as well. This concludes the

proof of 4.2.

4.2 The hyperbolic case

This subsection is devoted to the classification of the Brieskorn manifolds K(p,q,r) when

1
p + 1

q + 1
r < 1, i.e. the hyperbolic case. In particular, we will demonstrate the following

Theorem 4.3. Let Γ = Γ(p,q,r) be a hyperbolic triangle subgroup of PSL(2,R), let Γ̃ be
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its lifting to the universal covering group S̃L(2,R), and let Π̃ be the commutator subgroup

of Γ̃. Then the orbit space S̃L(2,R)/Π̃ is diffeomorphic to the Brieskorn manifold K(p,q,r).

The proof of this theorem follows essentially the same lines as Theorem 4.1, so we

will not go into the details of proving the lemmas, instead just defining analogous notions

and giving the overall structure of the argument. More details can be found in [9], but

here we adapt and refine the proof. Taking the place of homogeneous polynomials are

automorphic forms. We first give some definitions. Let H denote the (open) upper half

plane of C.

Definition 4.2. An abelian differential form on H is an expression of the form

f(z)dz, for f holomorphic on H and z the complex variable. More generally, for any

non-negative integer k, a differential form of degree k on H is a an expression of the

form f(z)dzk, where f is holomorphic, z varies over H, and 𭟋 varies over K.

Wemay view a degree k differential form as a complex-valued function in two variables,

specifically an element of the contangent bundle T ∗H ≃ (H×C)∗, in which case we write

ϕ(z, w) = f(z)wk (where w = dz).

Recalling that the Lie group PSL(2,R) = SL(2,R)/{±1} is the group of orientation-

preserving automorphisms of H, for any degree k differential form ϕ(z, w) and g ∈

PSL(2,R), we can pull back ϕ along g, using the chain rule to obtain the formula

g∗ϕ(z, w) = f(g(z))

(
dg

dz

)k

wk.

We can generalize this notion by only requiring that k is a rational number, which allows

us to define differential forms of fractional degree. Let C̃∗ denote the universal cover of

C∗ = C \ {0}, which is isomorphic to C as an additive group.

Definition 4.3. Let a an arbitrary rational number. Then a differential form of

fractional degree a on H is a holomorphic function ϕ : H × C̃∗ of the form ϕ(z, w) =

f(z)wa, where f is holomorphic on H.
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In this definition it is understood that wa is meant to be evaluated in C̃∗, then pro-

jected to C∗, where it is multiplied by f(z). We also need the following notion for the

proof of Theorem 4.3.

Definition 4.4. A labeled holomorphic map g from H to itself is a holomorphic map

z 7→ g(z) with nowhere vanishing derivative, together with a continuous lifting g̃ of the

derivative from C∗ to C̃∗. In other words, we require g̃ : H → C̃∗ to be a holomorphic

function such that π(g̃) = dg(z)
dz , for π the projection π : C̃∗ → C∗.

The point of this construction is that

Proposition 4.2. The set of labeled biholomorphisms from H to itself is a group isomor-

phic to S̃L(2,R), the universal cover of PSL(2,R).

Proof of this proposition can be found in [9]. We will also need the following

Definition 4.5. Let χ : Γ → U(1) be a character of Γ. We say the form ϕ is χ-

automorphic if

γ∗(ϕ) = χ(γ)ϕ

for every γ ∈ Γ.

For the special case χ = 1, in which case we have γ∗(ϕ) = ϕ, we say ϕ is Γ-automorphic.

Analogously to the spherical case, let Aa,χ
Γ denote the space of χ-automorphic forms

of degree a, and Aa
Γ the space of Γ-automorphic forms. Again taking direct sums we

obtain bigraded algebras A∗
Γ and A∗,∗

Γ of automorphic forms and χ-automorphic forms,

respectively. Let Γ̃(p, q, r) = Γ̃ denote the extended triangle group, defined as the lift

of Γ(p, q, r) to the universal cover S̃L(2,R), and as before let Π̃ denote the commutator

subgroup of Γ̃.

Analogously to Lemma 4.1, we have

Lemma 4.4. The vector space Aq

Π̃
can be decomposed as a direct sum of the subspaces

Aq,χ

Γ̃
as χ varies over all characters of γ̃. Therefore

A∗
Γ̃
=

⊕
A∗,∗

Γ̃
.
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The proof of Lemma 4.4 is very similar to the proof of Lemma 4.1. Similarly to the

spherical case, we want to show that the algebra of Π̃-invariant automorphic forms has

three generators satisfying the relations of the corresponding Brieskorn variety V(p,q,r).

To this end, let γ1, γ2, γ3 ∈ Γ̃, with γ1 acting on H via a rotation through P , γ2 rotation

through Q, and γ3 rotation through R. In much the same manner as above, it can be

shown that these elements generate Γ̃ and satisfy the relations γp
1 = γr

2 = γq
3 = γ1γ2γ3.

That is, there is a presentation for Γ̃ given by

Γ̃ = ⟨γ1, γ2, γ3 | γp
1 = γr

2 = γq
3 = γ1γ2γ3⟩.

As before we construct a special character χ0 : Γ̃ → U(1) by defining it on the generators

and extending linearly. Let s = π/A, where A is the area of the fundamental triangle ∆,

which we can compute explicitly as k = (1 + p−1 + q−1 + r−1)−1. We define

χ0(γ1) = exp(2πis/p), χ0(γ2) = exp(2πis/q), χ0(γ3) = exp(2πis/r).

In particular it’s quite easy to show that, for a differential form ϕ ∈ Aa,χ

Γ̃
, if ϕ is nonvan-

ishing at the vertices of ∆ then a divides s and χ = χ
a/s
0 (cf. [9] Lemma 6.1). With this in

hand, we can try to understand the generators of the algebra of Π̃-invariant automorphic

forms. In the case of the sphere, we did this by considering the orbits of the vertices of ∆

– each orbit was uniquely determined by a set of Γ-invariant lines through the origin in

C2 which, up to scaling, uniquely determined a polynomial fi
2 and a character χi such

that fi was χi-invariant. Analogously, Milnor proves in the hyperbolic case that As,χ0

Γ̃

contains exactly one (up to scaling) automorphic form that vanishes at any given point

x ∈ H and, since it is automorphic, therefore vanishes on the entire Γ̃ orbit of x in H.

There are three exceptional orbits, at the vertices of ∆. For instance, the automorphic

form ϕ vanishing at the vertex P is exhibited to have a p-fold root, i.e. an automorphic

form ϕ1 such that ϕp
1 = ϕ, and, by similar reasoning as in Lemma 4.2, he shows that the

2The vertex P corresponded to f1, Q to f2, and R to f3.
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associated character χ1 satisfies χp
1 = χ0. The upshot here is that, just as in the spherical

case, the Γ̃ orbit of each vertex of ∆ uniquely determines, up to scaling, an automorphic

form of Γ̃ and an associated character satisfying the relations of the Brieskorn variety.

To summarize this discussion: the algebra A∗,∗
Γ̃

is isomorphic to the algebra A∗
Π̃
, and

is generated by the special forms

ϕ1 ∈ A
s/p,χ1

Γ̃
, ϕ2 ∈ A

s/q,χ2

Γ̃
, ϕ3 ∈ A

s/r,χ3

Γ̃
,

with associated characters satisfying χp
1 = χq

2 = χr
3 = χ0. Each ϕi vanishes precisely at

each point of the Γ̃ orbit of its corresponding vertex, and they satisfy

ϕp
1 + ϕq

2 + ϕr
3 = 0,

by essentially the same reasoning as 4.3. Each ϕi is an element of the cotangent bundle

Hom(H×C̃∗,C), so we can define a map Φ : H×C̃∗ → C3 via Φ : z 7→ (ϕ1(z), ϕ2(z), ϕ3(z))

such that the image of Φ is contained in V(p,q,r) \ {0}. Using some facts about S̃L(2,R)

and complex manifolds, we actually obtain that Φ induces a diffeomorphism between any

element of the orbit space S̃L(2,R)/Π̃ and K(p,q,r), thus furnishing justification for 4.3.

It remains only to study the Euclidean case, when p−1 + q−1 + r−1 = 1. Using

suitably adapted techniques as in the above cases, Milnor showed that Euclidean Brieskorn

manifolds are diffeomorphic to the quotient of the universal cover nilpotent Lie group of

upper triangular real 3 × 3 matrices by a suitable discrete subgroup [9]. Summarizing

these three sections, we thus obtain the following classification of Brieskorn 3-manifolds:

Proposition 4.3. Let K(p,q,r) be a Brieskorn 3-manifold. Then K is diffeomorphic to

the orbit space G/Π, where G is the universal cover of either SO(3),PSL(2,R), or the

nilpotent Lie group of 3× 3 upper triangular matrices and Π ≤ G is a discrete subgroup,

determined by whether p−1 + q−1 + r−1 > 1, < 1, or = 1.
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5 Further developments

5.1 The general case

We first consider Brieskorn manifolds with more than three parameters. The classification

for these manifolds is almost precisely the same as for the three-parameter version, so in

some sense the three-parameter version is the most illustrative and interesting. Because

of this, we will only state the results with some discussion, and give references for more

details.

Let V = V(a1,...,an) be a Brieskorn variety with associated Brieskorn manifold K =

K(a1,...,an). Then K is a smooth 3-manifold determined up to diffeomorphism by the ai

[6]. Let n > 3, and fix a subgroup ∆(a1, . . . , an) of PSL(2,R), with Γ(a1, . . . , an) = Γ

denoting the lift of ∆(a1, . . . , an) to S̃L(2,R), and as before let Π = [Γ,Γ]. Now we

generalize slightly our definition of Brieskorn varieties to varieties of the form

VA = {z ∈ Cn : αi1z
a1+···+αinz

an
n =0,i=1,...,n−2

1 }

for an (n− 2× n) matrix A = (αij).

The following theorem is due to Neumann [11].

Theorem 5.1. Consider the natural action of Π on H×C̃∗. Then the orbit space H×C̃∗/Π

is biholomorphically isomorphic to VA − {0} for a suitably chosen A. Also, S̃L(2,R) is

diffeomorphic to K. These isomorphisms are equivariant with respect to various natural

group actions, described below.

Borrowing notation from [11], let

C = {(x1, . . . , xn) ∈ (P1
C)

n : xi ̸= xj for i ̸= j}/Aut(P1
C),

where as before P1
C denotes the Riemann sphere. We may interpret C as the set of

isomorphism classes of ordered n-tuples of distinct points of the Riemann sphere, denoting

each element as a pair (in the sense of inclusion) (S, (x1, . . . , xn)), where S is any space
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biholomorphically equivalent to P1
C. As discussed in §4 for the hyperbolic case, the triangle

subgroup ∆(a1, . . . , an) has a presentation

⟨γ1, . . . , γn | γa1
1 = · · · = γan

n = γ1 . . . γn⟩.

Letting Ci be the conjugacy class of γi, we note that the Ci are distinct and contain all

non-identity finite order elements of ∆(a1, . . . , an). For a fixed ordering of the Ci there is

a classical result that the subgroup ∆(a1, . . . , an) ≤ PSL(2,R) is determined up to conju-

gation by elements of PSL(2,R) by the pair (H/∆(a1, . . . , an)/), (r1, . . . , rn)) ∈ C, where

the ri are the ramification points of the quotient projection π : H → H/∆(a1, . . . , an)/),

i.e. the images of fixed/branch points. The space C is sometimes known as the “labelled

Teichmüller Moduli space”; for more discussion compare with [11].

Now we address the “natural group actions” referred to in Theorem 5.1. Let H =

Π(Z/ai). Then there is a natural action of H on VA(a1, . . . , an) given by termwise mul-

tiplication. We take the product with the left-multiplication action of C∗ to obtain

an (H × C∗) action on VA. Neumann shows that VA can be classified up to (H × C∗)-

equivariant biholomorphism by a unique element of C, written (P1
C, (λ1, . . . , λn−3, 1, 0,∞))

for elements λi ∈ C \ {0, 1}. This discussion leads to the following theorem.

Theorem 5.2. Let ∆(a1, . . . , an) ≤ PSL(2,R), and let the corresponding (n − 2) × n

matrix A have the form

A =

1 0 1 λ1

...
...

1 1 λn−3

0 1 1 1




Then (H/∆(a1, . . . , an), (r1, . . . rn)) = (P1

C, (λ1, . . . , λn−3, 1, 0,∞)) in C.

Neumann also shows that any such matrix A can be put in the form of Theorem 5.2

without changing the equivariant (with respect to the group action given above) isomor-

phism type of VA, so indeed this completes the classification of Brieskorn 3-manifolds.
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5.2 Directions for further research

Brieskorn manifolds are of considerable interest to topologists and geometers alike, owing

in part to the fact that they provide many examples of exotic spheres (sometimes called

topological spheres), n−manifolds which are homeomorphic but not diffeomorphic to the

Euclidean n-sphere. This is perhaps why these manifolds are attributed to Brieskorn,

who found in 1966 that the Brieskorn manifolds M(2,2,2,2,6k−1) for k ∈ 1, . . . , 28 furnish

all smooth structures on the 7-sphere, or in other words that these Brieskorn manifolds

classify all diffeomorphism classes of S7. [3]

Also of interest are the Brieskorn homology spheres, a class of Brieskorn manifolds

V(p,q,r) for which p, q, r are relatively prime. These are 3-spheres with isomorphic ho-

mology groups to the usual 3-sphere, and are in some sense a generalization of the torus

knots exhibited in §3. An open problem of some interest is the following, conjectured by

Gompf in 2013 [5].

Conjecture 5.1. No nontrivial Brieskorn homology sphere admits a psuedoconvex em-

bedding into C2,

The pseudoconvexness condition is not relevant for this writing, apart from the fact

that it is a rather strong condition (for example, it is much stronger than smoothness)

to impose, especially seeing as (Gompf notes) many Brieskorn homology spheres do not

embed even smoothly into C2. Still, there have been several partial results in the direc-

tion of the affirmative answer to this conjecture (see for example [8] for an account of

recent developments). This points to these Brieskorn manifolds being objects of partic-

ular interest and, even more, the slightly more general notion of Seifert-fibered homology

spheres are objects of principal interest in the study of Heegaard Floer homology and

more generally in low-dimensional topology ([13], [4]).

More generally, these Brieskorn manifolds provide the most digestible example of the

deep topological insight that can be gained from analyzing singularities of algebraic vari-

eties. In particular, the study of canonical and terminal singularities of projective varieties

is of great interest in algebraic geometry and specifically the minimal model program, the
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project to, roughly speaking, classify projective algebraic varieties (i.e. irreducible alge-

braic subsets of Pn
C) up to birational equivalence. My goal for research this summer, and

for my senior thesis, is to begin studying these singularities of projective varieties from a

more algebraic viewpoint (in contrast to the topological viewpoint of this paper), and in

general to build the foundations for further study in algebraic geometry.
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