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Abstract

This paper gives an overview of Alexander Beilinson’s novel construction of the p-adic period map
and elegant proof of Fontaine’s Cqr conjecture, comparing the de Rham and p-adic étale cohomology
theories of varieties over algebraic closures of p-adic fields. This overview is given in parallel with
the classical de Rham comparison theorem to demonstrate the elegance of Beilinson’s approach. I
also discuss various methods, focusing on spectral sequences, devised by Illusie, Bhatt, and others
to compute algebraic de Rham cohomology and derived de Rham cohomology of certain classes of

schemes and p-adic varieties.
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Chapter 0

Introduction

When I first encountered de Rham’s theorem, I was fascinated by the possibility of using topological
data to understand analytic properties of mathematical objects. This connection first seemed so
deep as to be impossible, but once the reasoning was laid in front of me it felt like an inevitability.
I wanted to push these ideas further: to understand which properties of manifolds or algebraic
varieties were due to some deep underlying phenomena rather than peculiarities of their settings.
For example, Hodge symmetry holding for compact Kahler manifolds is usually explained in complex
analysis courses as a byproduct of complex conjugation on the Dolbeault cohomology groups, but
this doesn’t touch on the deeper question of why it holds for abelian varieties in general.

I had an even stronger reaction when I encountered Fontaine’s Cyqr conjecture, comparing the
de Rham and p-adic étale cohomology theories of p-adic varieties, which are constructed in such
constrasting fashions — one is purely geometric and one is algebraic and arithmetic. Though Falting
proved this conjecture in 1988 [6], the techniques used were quite complex and seemed to be com-
pletely out of touch with the classical de Rham theory. Alexander Beilinson breathed new life into
the problem in 2012, with a paper proving not only the p-adic comparison isomorphism, but also a
very natural analog of the classical Poincaré lemma, via an ingenious construction that feels as if
it’s scratching at the deep pattern underpinning these comparison theorems in general. I will give
an exposition of Beilinson’s construction of the comparison isomorphism and the p-adic Poincaré
lemma, presenting it in parallel to the classical story. I will also discuss more recent work of Bhatt

computing algebraic and derived de Rham cohomologies.



Chapter 1

Hodge theory and comparison

isomorphisms

1.1 Classical Hodge Theory

One of the primary aims of classical Hodge theory is to understand the extent to which the cohomol-
ogy of a complex manifold is controlled by its geometry. The principle objects of interest are Kdhler
manifolds — a complex manifold X is Kéahler if it is equipped with an everywhere non-degenerate
real closed 2-form w, called the K&hler form. The mere existence of such a Kahler form already
forces a surprising amount of structure on the manifold itself. Relatively straightforward analysis of
these Kéahler manifolds already yields several basic properties guaranteed solely by the existence of

a Kahler form w. Among others, we have that

(i) w is a real closed differential form of type (1,1) with respect to the complex structure on X.

(ii) Along with its complex structure, X also admits compatible Riemannian and symplectic struc-

tures.

k

(iii) If X is compact and of dimension 2n, then the closed form w”® is not exact for any integer

1<k <n.

(iv) If X is compact and F is a holomorphic bundle over X, then P(E), the projective bundle

associated to FE, is also compact Kéhler.

(v) If Y is a complex compact submanifold of X, then Xy, the blowup of X along Y, is also

Kahler, and furthermore it is compact if X is.



Let X be a compact Kéhler manifold. Let 8,6 denote the Dolbeault operators § : QP4 — QP14
and § : QP9 — QP9+l where QP9 is the vector bundle of complex differential (p, ¢)-forms on X,
and let d = § + & be the exterior derivative (note that this relation holds in particular because X is
a complex manifold). For a complex differential operator f, recall that the f-Laplacian Ay is the
operator Ay = ff* + f*f, where f* denotes the formal adjoint operator of f. We say a differential
form o on X is Ag-harmonic if it is annihilated by the f-Laplacian, i.e. if Aya =0.

If AF(X) = D, o=k QP9 is the vector space of differential forms of total degree p +¢ = k on
X, the é-Laplacian is compatible with this decomposition of A*(X) into types, and in particular
if a form o € AF(X) is As harmonic, each of its components a?¢ is Az harmonic as well. A key

theorem is the following [21].
Theorem 1. If X is Kdhler, then Ag = 2A5 = 2A5.

Hence the A4 Laplacian respects this decomposition of forms into types as well. Thus the space

A% (X) of harmonic k-forms on X is the direct sum of the spaces J#74:

A X)= @ #UX). (1.1)

p+q=k
Recall the key fact in the theory of de Rham cohomology that the de Rham cohomology classes
of X (thus Betti cohomology classes, by de Rham’s theorem) each have precisely one harmonic
representative, yielding an isomorphism from the space of complex-valued harmonic k-forms on X
to the Betti cohomology group H*(X,C). This combined with , yields the Hodge decomposition

of the Betti cohomology of X

H*(X,C)= @ H", (1.2)

ptg=k
where HP'¢ denotes the set of classes of differential forms representable by a closed form of type
(p, q). Note that we can replace the summands in the right hand side of |1.2| with any term appearing

in the chain of isomorphisms

HP(X) = 79(X) = HY(X, %),
where the last term is the gth cohomology of Q% viewed as a sheaf over X.
The key idea enabling this entire discussion, which will be of immense importance when we
move to the p-adic case, is the Poincaré lemma, a deceptively simple statement that lends a tremen-

dous amount of structure to differential forms on complex manifolds. In this setting, the simplest



expression of this lemma is as follows.

Lemma 1 (Poincaré, version 1). Let a be a closed differential form of strictly positive degree on a

differentiable manifold. Then, locally, there exists a differential form B such that o = df.

While this version yields the helpful mantra “closed forms are locally exact”, it is not quite as
useful in practice as the following equivalent version, in terms of augmentations of chain complexes.
Let Cx denote the constant sheaf of stalk C over X, and let Q% be the de Rham complex of

holomorphic differential forms on X.

Lemma 2 (Poincaré, version 2). The natural augmentation map
Cxe = (Ox = Q% = 0% —...) (1.3)

18 a quasi-isomorphism,

where here an augmentation is understood to be a morphism in the category of simplicial objects,
and Cx, is the constant simplicial object associated to Cx [20]. The equivalence of these statements
is evident: version 2 implies that the de Rham cohomology of X is locally trivial (in different terms,
the complex of sheaves 0 -+ C — Ox — QL — Q% — ... is exact) so that, in the local picture, all
holomorphic closed forms are exact. In the language of derived geometry, there is an isomorphism
of right derived functors, where the augmentation above is viewed as a resolution of the constant

sheaf Cx:
RI'(X,C) = RI(X,Q%). (1.4)

The quasi-isomorphism appearing in the Poincaré lemma is precisely what induces the famous

de Rham theorem comparing Betti and de Rham cohomology.

Theorem 2 (de Rham comparison). Let X be a complex manifold. Then there is a natural isomor-
phism

H*(X,Q)®C = H*(X,0%) (1.5)
between Betti and de Rham cohomology.

This isomorphism, sometimes called a period isomorphism, can actually be described quite ex-
plicitly. Viewing the right hand side as Hom(H, (2% ), C), this isomorphism associates a differential
form w € H*(X,Q) to the map v — f,y w, where v is a singular chain in X. The numbers thus

obtained by integration are known as periods..



Indeed, even “version 2” of the Poincaré lemma fails in general when we consider the case of
schemes over C, rather than manifolds or smooth varieties. Let X be a smooth scheme of finite type
over C, and denote by X?" its analytification. Equivalently, the corresponding map of right derived
functors

RT(X,C) — RI(X®* C) (1.6)

fails to be an isomorphism.

A deep theorem of Grothendieck [10] says that the natural map
RT(X,Q%) = RI(X™, Q%an) (1.7)
is an isomorphism. When composed with the inverse of , this yields an isomorphism
RI(X,0Q%) = RI(X** C) (1.8)

or, after passing to cohomology, H* (X, Q%) — H*(X®*,C). In the affine case, we have the equality

H*(X,Q%) = H*T'(X,Q%), and so by the universal coefficient theorem we may conclude that
H*T(X,Q%) = Hom(H,(X*),C), (1.9)

where again the isomorphism is given explicitly by integrating differential forms along singular
simplices in X. This is the corresponding version of de Rham’s theorem for the case of schemes.
Furthermore if X is instead a scheme over any field k with ¢ : £ — C an embedding, and X, denotes

the pullback of X along ¢, recall that extension of scalars yields the canonical isomorphism
H*(X, Q%) ®k(C1>H*(X“QBQ/C). (1.10)

Combined with (1.8]), this yields the period isomorphism analogous to (1.5) in this setting:

Theorem 3. Let X, k,. be as above. Then there is an isomorphism
H*(X,Q%/) @, C = H*(X,Q) ® C (1.11)

depending on v. Furthermore if X/k is proper and smooth, this isomorphism is compatible with the

Hodge Filtration induced by the naive filtrations on the de Rham complezes.



For a complex algebraic variety X we may also consider algebraic differential forms [11]. As

above, there are evident maps

HY(X, Q) — HY(X™, OF..) and Hig(X) = Har(X™). (1.12)

Furthermore these maps are isomorphisms in particular when X is projective, by Serre’s GAGA
theorem [20]. However, unlike the above cases, there is no analagous “algebraic” version of the
Poincaré lemma that holds in this generality, so we are unable to construct a comparison isomorphism
of the sort above. We will discuss this in more detail later on.

Artin [I] gave a way of describing the singular cohomology of X2" algebraically using the étale

cohomology, whereby for m > 1 we have

H*(X* 7/mZ) = H,(X,Z/mZ), (1.13)

and furthermore, taking the inverse limit of these isomorphisms for p a prime, this yields the iso-
morphism

H*(X*,Q,) = HZ(X,Q)). (1.14)

But in general there is not a comparison with the de Rham cohomology. This is the motivation
for moving to the p-adic setting, where the situation is clarified somewhat and constructing the
desired comparison isomorphism is actually possible. The remainder of this chapter will detail the
construction of a suitable isomorphism for comparing de Rham and étale cohomologies in the p-adic
setting. The key ingredients will be devising the “correct” p-adic analog of the Poincaré lemma and
construction of a suitable period ring to tensor with in our comparison. While the existence of such
a comparison isomorphism has been known for some time (it was first conjectured by Fontaine in
1981 [7] and proved in general by Faltings in 1988 [6]), the most natural construction was given
by Beilinson in 2011 [2], whose approach we will be following here. As shall be seen, Beilinson’s
techniques are quite geometric in nature, and don’t require any of the syntomic cohomology or
algebraic K-theory used by Fontaine. Indeed, Beilinson’s approach is more or less in the spirit of

the construction of Theorem [3



1.2 The p-adic case, according to Beilinson

We will focus in particular on schemes over p-adic fields that are separated and of finite type, i.e. p-
adic varieties. If k is a p-adic field with algebraic closure k and X is a variety over k, an isomorphism

comparing the de Rham and étale cohomology theories will take the form
p: Hig(X)®r R = H;(X,Z,) ® R, (1.15)

where R is the some ring containing the periods analogous to the complex numbers obtained in the
classical case. The appropriate R was originally constructed by Fontaine [9], and we will denote it
in what followx by Bggr. Describing this ring will require some key technical notions; however, if we
put aside for a moment the precise nature of Bygr, the broad strokes construction of the isomorphism
p is strikingly similar to that of Theorem [3| again indicating that Beilinson’s approach is the most
natural.

Recall in particular the role of Q%.., the de Rham complex on X?": the isomorphism in
factors through RT'(X®",Q%..), inducing the period isomorphism in Theorem [3] The comparison

has roughly the structure pictured in Figure[1.1

RT(X™ Q%..)

T

RI'(X, Q%) ---------=mmmmmmmmmm oo » RT'(X?*,C))
Figure 1.1: The comparison pattern for varieties over C
Describing the analogous object to “mediate” between Hjp (X) ®3 Bar and HZ (X, Qp) ® Bar
was one of the key insights of Beilinson. In this case, the object of interest in the factors of p is AER,
a projective system of sheaves of differential graded algebras on Varz, the category of k-varieties.

The basic structure of this comparison is pictured in Figure [1.2| - the rest of this section is devoted

to understanding the maps and terms involved in this diagram.

A7, —— Al —— AL ®Q

Figure 1.2: The p-adic comparison pattern.



1.2.1 The derived de Rham algebra

We will now give some key technical definitions that enable us to formulate a p-adic version of the
Poincaré lemma. Let R be a ring, and A an R-algebra. Following Illusie [13], we define the cotangent
complex L p of A as

La/r = C(Re ®p, Up, /4)- (1.16)

Here R, is the constant simplicial object associated to R, €o : Ps — R, is the standard simplicial
resolution of R defined in [13], Q2 is the simplicial complex of R—modules Qp — Qp — Qp, ...,
and C' is the associated chain complex. The cotangent complex is related to the algebraic de Rham

complex according to the following proposition.
Proposition 1. There is a natural isomorphism Ho(L z/R) = QA/R.

Proof. As above, let €q : Po — R,o denote an augmentation of P,. By definition of an augmentation
map we have egdg = €gdy, where §,, is the nth face map d,, : P, — P,_1. Thus the composition in

the associated chain complex C'
A@p, QPR A@p, Qb p = Uh)g

is zero. Hence there is a morphism of complexes L,/r — 9,14 /R where we are viewing the space
Q}L‘ /R3S 2 complex concentrated in degree 0. Since the ring homomorphism Py — A is surjective, so
too is the induced map on homology Ho(La/r) — Q}MR. Letting I = ker(eg : Py — B) we can use

standard techniques in commutative algebra (see, for example, [L6]) to obtain a short exact sequence

Since the map P, — A is a resolution, the induced sequence is exact and thus we must have that
I =1Im(dp— &1 : P, = Pp). Thus the image of I/I? in A®p, Q}PU/R is covered by A®p, QJIPI/R' This

yields the desired result. O

Though we used the standard free resolution of R in the definition of the cotangent complex,
the power of this definition is that the cotangent complex is invariant up to quasi-isomorphism with

respect to other free resolutions. That is,

Theorem 4. Let Qo — A be a simplicial resolution of an R-algebra A, whose terms are free



R—algebras. Then there is a quasi-isomorphism of chain complexes of A-modules.
La/r = C(Re ®q, 24, /a) (1.17)

We will not prove this here, as it requires some more commutative algebra machinery that won’t
be needed for the rest of this writing, but a detailed proof of this theorem may be found in [13].

Two important properties of the cotangent complex are the following.
Proposition 2. If M and N are Tor-independent R—algebra then the natural base change mor-
phism
R®% Ln/r = Lygnn/m
is actually a quasi-isomorphism of (complexes of) M ® N-modules.

Proposition 3. A sequence R — S — T of morphisms of rings induces an ezxact triangle in the

derived category of complexes of T-modules:

T ®% Ls/r Lr/r

Lt/s

Consider now the double complex in Figure obtained by applying the functor R — Q% to

the terms of P,.

LT

03, 03 O3,
I I I
Qp, Qp, Qb
| | |
P P P,

Figure 1.3: The derived de Rham double complex.

The total complex associated with this double complex is called the derived de Rham complex or

the derived de Rham algebra of R, and is denoted LQ:‘/R. Though LQ;UR was defined only as a chain

IThat is, if Torf*(M, N) = 0 for all i > 0.



complex, it is possible to equip it with a product structure induced by a product P; ® P; — FP;1; on
P,. Endowing LQ% /R with this multiplication in fact gives it the structure of a differential graded
algebra over A, explaining the terminology derived de Rham algebra.

We can also endow LQ% /R with a filtration compatible with this product structure. The Hodge

) = 95

filtration on LQ;‘/R is induced by the naive filtration on the Q% : we define Fi(Q3 P/ R

Po/R
This is a filtration on the vertical chains, hence inducing a filtration on the total complex. We can
complete the derived de Rham algebra with respect to this filtration, which will be very useful in
practice. We define the Hodge-completed derived de Rham algebra as the projective system of chain

complexes

L% g = LY 5/ F". (1.18)

The graded pieces of the derived de Rham algebra are actually quite easily computable, as follows.
This quasi-isomorphism also reveals much about the relationship between the derived de Rham

algebra and Illusie’s cotangent complex.

Proposition 4. Let P, denote the standard simplicial resolution of an R-algebra A. Then there is

a quasi-isomorphism of chain complexes
grpQp, jp = LA Lasg[—i] (1.19)

by which we may compute the graded pieces of Q;D./R with respect to the Hodge filtration.

Proof. By definition, we have
erp L, g = Qp, pl—i] = (- = Qp, (R) = Qp /p)-

We may view the augmentation € : P, — A, as a morphism of P,-modules, which induces a quasi-
isomorphism between the associated chain complexes. A technical lemma of Illusie [13] yields a
quasi-isomorphism

Py ®p, Qz)3./R = A ®p, %./Aa

due to the fact that Qg,. /R @ (simplicial) P-module with free terms. We compose this with the

evident quasi-isomorphisms

Ae®p, Qs > Ae@p, N4 55 N(Ae©p, U, p),

10



yielding the desired quasi-isomorphism.

O

This proposition allows us to formulate an analog of Theorem [ for the derived de Rham algebra,

allowing us to define it up to quasi-isomorphism using any simplicial resolution of A.

Theorem 5. Let Qo — A be a simplicial resolution of A with terms that are free R-algebras. Then

there is a quasi-isomorphism of chain complezes
LQ;VR = Tot(Qb./R). (1.20)

Furthermore, this quasi-isomorphism is compatible with the Hodge filtration and the product structure

on LQZA/R).

Proof. See [13] O

1.2.2 The h-topology and the comparison isomorphisms

We are working toward Fontaine’s period ring Bgr. As before let k£ be a p-adic field with algebraic
closure k. Following Beilinson [2] we define Agr := LQZ,)? /o, Which is a projective system of Op
modules equipped with a product structure and a filtration. Fontaine [9] defines a ring BIR as
follows ([13], [2]), which does not depend on k and will turn out to be the (complete) valuation ring

of Bgr, Fontaine’s ring of p-adic periods.

By = lm((Ox @w W( lim Og/p))/(ker0)')" @ Q), (L.21)

with W = W(k) the ring of Witt vectors over k [17], 0 : O ®w W(l'&lx'_mp Oz/p) — O= is the
canonical map sending (zg,x1,...,Zpn,...) € W(&iinx._mp Oz/p) to > p"z,(n), where 2™ e O,
(x;mﬂ))p = 2™ and " denotes the p-adic completion. Though this definition seems quite removed

from the present situation, a result of Beilinson [2] relates it neatly to Aqgr.

Proposition 5. There is a canonical isomorphism

Bl = Rlim((Aar/F)37,) © Q), (1.22)

K2

where & 1is the completed derived tensor product, as used by Beilinson: for a complex E of abelian

11



groups, define
ERZ, = Rlim(E ot z/p"), (1.23)

where @ is the derived tensor product.

Proof. T will provide only a sketch of the proof, based on Illusie [14]: see [2] for a more detailed

treatment. Fontaine [7] gives the relation

Q. /0, = (k/a)(1),

where a is defined as the fractional ideal of O generated by p~!/ (p’l)D,;/lko, with kg the fraction

field of W (k) and Dy, is the different. That is, a = p‘l/(ff"l)D,;/lk0 - O C k. Hence we have

canonical isomorphisms
Log/o, = Qo 0, = (k/a)(1) = (Qp/Zy) @ a(1).
We can apply Quillen’s shift formula [13] for M an A-module to obtain, for all nonnegative 4,
LAY (M[1]) = LT (M)][i).
Therefore we can calculate the cohomology of the graded objects directly, as

R 0 ifn #0
H"(grp Aqr®Zy)

OL(@(1)) else,
where (o) denotes a divided power algebra [I8]. The point is that (Agr/F*t')&7Z, is concentrated
in degree n = 0, with

((Aqr/F™H®Z,) @ Q = C[t)/t .

By definition we have Aqr/F? = (Of 4 Qéi/ok), so that Aqr/F? =5 kerd =: OF since d is

surjective [8]. Let Ajns = @Z((Ok Ow (k) W(l'&lewP Oz/p))/ ker 6*)" be the universal thickening

(see [7]). Define the collection of maps

U; : Ainf/FH_l — (AdR/Fi+1)®Zp.

2The derived tensor product is the left derived functor of the tensor product functor -®- : Mod 4 x aMod — pMod.
More precisely, we have that - ®L - : D(Mod4) x D(,Mod) — D(zMod) is the derived tensor product functor, for
D(Mod 4) and D(4Mod) the derived categories associated to the categories of right and left A-modules, respectively,
for A a dga over a ring R.

12



Again, Fontaine showed in |7] that u : Aje/F? — (Aqr/F?)®7Z, is a filtered isomorphism, so that
wig : Bp/F'™*' — (Aar/F™)8Q, := ((Aar/F")87Z,) ® Q

is a filtered isomorphism as well. Taking inverse limits yields the desired isomorphism of the propo-

sition. O

Accordingly, we define Bqg, also known as the Fontaine period ring, as the fraction field of the
discrete valuation ring B(‘fR.

The goal is now to sheafify Agg with respect to a Grothendieck topology on the category of
schemes fine enough to trivialize higher cohomology of these complexes over small open sets, which
will furnish a p-adic Poincaré lemma. While this notion seems very natural when viewed next to e.g.
Lemma 2] actually finding a suitable Grothendieck topology was one of the key insights of Beilinson.

Note that neither the proper topology, generated by proper and surjective coverings of a scheme
S, nor the étale topology, generated by standard étale coverings of S, is fine enough for our purposes
[2]. Instead, we turn to Voevodsky’s h-topology, with covering families generated by both proper
surjective maps and étale surjective maps. More precisely, Voevodsky define the h-topology as
follows [19].

A morphism of schemes p : X — Y is called a topological epimorphism if the induced map on
underlying Zariski topological spaces is a quotient map, in the sense that p is surjective and the
topology on Y coincides with the quotient topology induced by p. Furthermore, such a map is
universal topological epimorphism if, for any Z/Y, the base-change morphism pyz : X xy Z toZ is
a topological epimorphism. These maps generate a covering of a scheme X: an h—covering of X is
a finite family of morphisms of finite type p; : X; — X such that [[p; : [[X; — X is a universal
topological morphism. These h-coverings define a pre-topology on the category of schemes, and the
h-topology is the associated topology. Notice in particular that the h-topology is finer than both the
proper and étale topologies, as desired.

This use of the h-topology is inspired by a theorem of Bhatt [4]. Roughly, each higher cohomology
class of a coherent sheaf is p-divisible after passing to an appropriate proper and surjective covering
or, in this case, after tensoring with Z,. This indicates that we should consider the tensor product
AdR®Zp rather than Aggr in order for the higher cohomology of AdR@)Zp to vanish on small open
sets. The idea is to write AER to denote the sheafification of Agg with respect to the h-topology

(the precise meaning of this will be made clear), allowing us to state Beilinson’s p-adic Poincaré

13



lemma [2] [20]:

Theorem 6 (p-adic Poincaré lemma). The maps
AR®Z, —» A'BZ, (1.24)

are quasi-isomorphisms (where Agr 1is viewed as a constant h-sheaf), compatible with the Hodge

filtration.
Note that this is the map ¢ in Figure As a result, we have the following

Corollary 1. Let X be a smooth variety over a field k. Then for each n > 0 there is a filtered
isomorphism

HE (X5, Z) ®2, Bar <> H(Xg, Alp) 8Q,- (1.25)

The goal is to use this h-sheafification as a “bridge” to modulate between étale and de Rham
cohomology on X. Therefore, to construct the p-adic comparison isomorphism we must understand
how the right hand side of relates to the de Rham cohomology of X. Indeed, Beilinson does
this by proving that Af @ Q is precisely the h-sheafification of the Hodge-completed logarithmic
de Rham complex.|2] Formalizing these ideas requires some finesse. I will summarize several of the
technical difficulties that arise — for a more complete picture, see [2] [20].

To ensure that the de Rham complexes in question are well-behaved, we work only in the gen-
erality of smooth varieties U over a characteristic zero field k£ with a smooth normal crossing com-
pactification U, i.e. such that there is a smooth compactification j : U — U such that the divisor
D = U/U has normal crossings. A suitable compactification exists due to Hironaka’s theorem on
resolution of singularities [12]

With U, U, D, and j as above, we define the logarithmic de Rham complex Q'U/k(log D) as the
subcomplex of j*Q'U/k for which the terms have local sections w € j*Qg/k(V) such that both w
and dw have at worst logarithmic singularities along D, for V' a small open set. A more thorough
treatment of these complexes may be found in [21].

Denote by Py, the category of such pairs (U, U), i.e. where U is a smooth k-variety, U is a smooth
compactification, and U \ U is a normal crossings divisor. The contravariant functor on Py, sending

these pairs to the associated logarithmic de Rham complexes

3Namely, Hironaka’s resolution of singularities ensures that a smooth variety X may be viewed as an open variety
of some smooth projective variety such that the boundary is a normal crossings divisor.

14



(U, U) QF , (log D). (1.26)

This functor is a presheaf on Py. We cannot just naively sheafify the total derived functor of this
presheaf, as it takes values in a derived category and wouldn’t yield a sheaf on P,. However, Illusie
[13] uses Godement resolutions (see [21]) to find a complex C® representing this functor, yielding
the presheaf

(U,U) — T(U, C'(Q’v/k(log D)), (1.27)

which is more or less a derived version of the above presheaf. We may pullback the h-topology along
the forgetful functor Py — Vary to sheafify into an h-sheaf on P,. We denote the h-sheaf thus
obtained by Agqr. Note that the Hodge filtration on Q.U /k(log D) induces a filtration on Agg. In
fact, Aqggr yields an h-sheaf on the category Vary as well:

Theorem 7. There is an equivalence of categories of h-sheaves over Py and h-sheaves over Varg

induced by the forgetful functor Py — Varg.

Proof. The proof requires some sheaf-theoretic preliminaries. We first recall a classical comparison

result for Grothendieck topologies, due to Verdier.

Lemma 3. Let ' : C — C' be a functor between small categories. Let C' be equipped with a
Grothendieck topology, and C' equipped with the induced Grothendieck topology (the finest topology
in which sheaves on C' pullback to sheaves on C). If F is fully faithful and every object of C' has
a covering by objects in the image of F, then the pullback functor induces an equivalence of the

category of sheaves on C' with the category of sheaves on C.

In other words, under a relatively unrestrictive set of conditions, we can construct a push-forward
functor of sheaves on C' to sheaves on C’ which is right adjoint to the pullback functor.

Beilinson refined Lemma 3 to account for functors which are faithful but not fully faithful by
replacing the covering condition in Lemma 3 by the following, more complicated, condition:

Condition (x): For every V € C’ and a finite family of pairs (W,, f,) with W, € C and
fa : V = F(W,) morphisms in C’, there exists a set of objects W € C together with morphisms
F(Wg) — V in C’ satisfying:

e The morphisms F'(W3) — V form a covering family of V.

e Every composite morphism F(Wjz) — V — F(W,) is in the image of a morphism W3 — W,

via F.

15



With this refined condition, Beilinson gave the following analogue of Lemma 3

Lemma 4. If C,C" are as in the previous lemma and F : C — C' is a faithful functor satisfying
condition (x), then the pullback functor induces an equivalence of the category of sheaves on C' with

the category of sheaves on C' for the topology induced by F'.

Note that Beilinson’s condition reduces to Verdier’s in the case where the B, are an empty set.
We can now prove Theorem 7.

Apply Lemma 4 in the situation where C’ is Vary equipped with the h-topology, and F is the
(faithful) forgetful functor (V,V) + V from the category of Pj, of such pairs where V is a k-variety
and V is a proper k-variety containing V as a dense open subset. Nagata’s theorem ensures that
condition (*) is satisfied in this case.

Since the inclusion functor P — Py, is fully faithful, we may apply Lemma 3. It is left to check
that each pair (V,V) in P}, has an h-covering (U,U) — (V,V) by a pair in P, which follows from
Hironaka’s theorem.

O

For any smooth k-variety X, this morphism of complexes of presheaves C'*(Q2

ﬁ/k(IOg D)) — .AdR

induces morphisms

RPdR(X/k) — RT'y, (X, AdR)~ (128)

Theorem 8. Let X be a smooth k-variety. Then the maps appearing in [1.28 are filtered quasi-

isomorphisms.

Proof. We may assume that & = C, by a Lefschetz principle argument. Let X be a smooth normal
crossing compactification of X with complement D. From Beilinson, there exists an h-hypercovering
Ve — X such that each V, is a msooth k-scheme of finite type, and furthermore there is a simplicial
compactification V, < Vo — Y such that V,, is proper and smooth with D,, :=V, \ V,, a normal
crossing divisor. On Vj,, consider the simplicial complex of presheaves Q.V. /k(log D,).

By [10], there is a filtered quasi-isomorphism

RI'(V,, Q'V.\C(log D,)) ~ Rling(V,,C),

where the RHS is complex singular cohomology. Likewise there is a filtered quasi-isomorphism

RT(Ye, Q% (10g D)) 2 Rlsing (Y, C)
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These isomorphisms induce commutative diagrams on the level of cohomology for all dimensions

n, and again by [10] we obtain a vertical isomorphism

Hn

sing

(Ve,C) ~ HZ

sing

(?7 (C)a

hence by commutativity the following is also an isomorphism:

H™(V,, Q'V./C(log D,)) ~ H"(Y, Q%/C(log D)).

Recall that RT(Y, Q2 _(log D)) is computed in the Zariski topology by I'(Y, C*(Q*

Y/C (Y,?)/(c))’ and

v/C

similarly for the simplicial version. Hence that the direct system H™(V,, C*Q2(log D)) is constant
for all V4, as above. The direct limit of this system is H"(X, Aqr), so we are done.

O

For reasons that will become clear when we construct the comparison isomorphism, it is useful
to formulate a “Hodge-completed” analog of the above theorem. The Hodge-completed de Rham
complex Q’U/k(log D) is defined to be the inverse system of the quotients Q'U/k(log D)/F!, with F?
denoting the Hodge filtration. In parallel to above, we write .%TdR as the h-sheaf associated to the
presheaf

(U,0) = T(T, C* (@, (log D)))

on the category Pi. Again by Theorem [7] this sheafifies to a sheaf on Vary, yielding morphisms
RT4r(X)" = RT)(X, Adr). (1.29)

The situation here is much the same as for the non-completed complex. Since the Hodge filtration
on any fixed HJ is finite, the cohomology groups of the left hand side of the above coincide with
those of the non-completed complex. So, as a corollary of Theorem [8 these morphisms are also
filtered quasi-isomorphisms.

Next, consider when k is a finite extension of Q,, i.e. when k is a p-adic field. We define a
semistable pair over k to be a pairing (U,U) comprising a smooth k-variety U along with an open
embedding j : U — U with dense image into a reduced proper flat Oy-scheme U and D = U/U
a normal crossings divisor. Then define a semistable pair over k to be a pair (U,U) defined by

an open immersion of a k-variety U in a flat proper O scheme U, arising via base change from a
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semistable pair (in the above sense) (U’,U’") defined over a finite extension k'/k. We denote by SS3
the category of semistable pairs over k.

Let (V,V) be a semistable pair over k. Beilinson uses techniques from logarithmic geometry
(a good basic reference is [15]) to show the existence of the (completed) derived log de Rham
algebra LQZVJ,) /O defined analogously to the usual derived de Rham algebra. Now, consider the

contravariant functor on SS3 given by the association
(V.V) =TV, Ly 1y 0,)- (1.30)

By applying the Godement resolution C*® for the Zariski topology to the associated derived
functor RT'(V, LQEV,V)/Ok)’ we obtain a presheaf [21] on SS+:

(V,V) = TV, C* (L1 /0,))- (1.31)

sending semistable pairs over k to projective systems of complexes of the sheaves I'(V, C*® (LQEV;V/Ok)/Fi)).
Now consider the forgetful functor SS¢ — Vary from the category of semistable pairs over k to

the category of k-varieties. We pullback the h-topology over Vary to SSi along the forgetful functor

and sheafify the presheaf to obtain an h-sheaf over SS; which we will denote by AER. In fact,

this also induces an h-sheaf over Var; according to the following theorem, which is the analog of

Theorem [§] in this setting.

Theorem 9. There is an equivalence of categories of h-sheaves over SSt and h-sheaves over Varg

induced by the forgetful functor SSz — Vary.

With these notions in hand, we are finally able to construct the map v to complete the comparison
pattern in Figure following the construction of [20]. We begin with the following proposition of

Beilinson [2]

Proposition 6. There is a canonical isomorphism
Al ©Q 2 A, (1.32)
With this in mind, consider the morphisms of log schemes

(U,U) EN Spec(’)gﬁoz,
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where the second and third terms have trivial log structure. By [5| we obtain from this sequence a

transitivity triangle of log cotangent complexes, which induces a map of cotangent complexes

f*Logjo, = Lwuy o,

and a map of derived log de Rham complexes

FLY o, = L% /0, (1.33)

We can quotient by the filtration F* to identify the left hand side of (1.33) with the constant sheaf
on U associated to Agr/F®. As discussed earlier, the higher cohomologies of this sheaf are trivial,

so we obtain the following morphism of complexes
Aar/F" = T(U,C* (LY 10, /F), (1.34)

where Aggr is viewed as a complex concentrated in degree 0. After sheafifying the right hand side

with respect to the h-topology, we obtain morphisms
Aqr/F* — AER/Fi. (1.35)

1.2.3 Constructing the comparison isomorphism.

We are now ready to return to Beilinson’s version of the p-adic Poincaré lemma:

Theorem 6 (p-adic Poincaré lemma). The maps
Adar/Fi82, — A, JFi&T, (1.36)

induced by[1.35 are filtered quasi-isomorphisms, for all i.
Taking this theorem for granted for the moment, we have the following corollary [20]

Corollary 2. Let X be a smooth k-variety with a smooth normal crossing compactification. Then

there are filtered quasi-isomorphisms

RUe(X5, Z,) @2, (Bin/F') = RDy(Xg, AYF)3Q,
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for all i. Hence in the limit we obtain the filtered quasi-isomorphism
RIg (XE’ Zyp) Qz, Bd+R — R, (XE’ AER)Q%QP'

To prove this, we first need the following proposition, for which proof can be found in [20]

Proposition 7. Let X be a reduced connected noetherian excellent scheme, and A a torsion abelian
group. If Ag and Ay are the constant étale and h-sheaves on X, respectively, there is a canonical
quasi-isomorphism

RT'(Xgt, Agt) — RI(Xp, Ap)

Proof. (Corollary The following maps are quasi-isomorphisms for each 4, by definition of the

derived tensor product.
RU (X3, Zp) ©%  (Aar/F') = Rle, (X5, Aar/F"). (1.37)

Note that the completed tensor product introduced earlier is an exact functor, so by taking the

complete tensor with Z, we obtain quasi-isomorphisms
RUe (X5, Zy) ®% (Aar/F")®Z, = Rle (X, (Aar/F')RZ,),
and furthermore applying the above proposition yields quasi-isomorphisms
RU¢ (X7, (Aar/F)®Zy) = RU, (X7, (Aar/F*)RZy).
Now we compose with the quasi-isomorphism of Theorem ?7 to obtain
RUe(Xg, (Aar/F)8Zy) = RUy (X, (Al /F)BL,). (1.38)

Combining this chain of quasi-isomorphisms and again making use of the fact that @)ZP is an

exact functor,
RTs(Xp Zp) @% (Aar/F)®Z, <> RTUu(Xp, (Al /F)BZ,)37,,

The result then follows by applying [5| and tensoring with Q. O
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With the p-adic Poincaré lemma in hand, we can explicitly construct the promised comparison
map

p: HSR(X) R Bar = Hgt(X, Zp) ®Zp Byr, (139)

where as before X is a smooth k-variety with a smooth normal crossing compactification. We

compose the quasi-isomorphisms of (1.29) and (|1.32)) to obtain
RU4r(X)" =5 Ry (X7, Alp) ® Q. (1.40)

Consider the obvious map

RU, (Xg, A%L) s RO, (X, ALR) B2,

We can tensor this map with Q and compose with to obtain
RTar(X5)" — RT)(Xp, AlR)3Q,.
Applying Corollary [2] to this map yields
RT4r(X3)" = RU& (X7, Zy) @z, Bi:.

Now we can just tensor up with B;'R and pull back along the map RTqgr(X)" — RTqr(X3)" to
obtain

erR(X)A R B(TR — RTg (XE’ Zp) ®Zp B(TR

The desired comparison isomorphism
p: H;R(X) Rk Bar, = Hgt(X, Zp) ®Qp Bar (1.41)

then falls out after passing to the field of fractions Bygr and taking cohomology. Thus we have
constructed the p-adic de Rham comparison isomorphism.

To prove that is actually an isomorphism, Beilinson performs a computation specifically
for the case X = G,, = Speck[z,z~1], followed by what he terms “usual tricks of the trade” to
show the isomorphism holds in general. Indeed, since G,, is connected and of dimension 1, the only

isomorphism necessary to verify is for the case n = 1:

p: Hig(Gy) @k Bar = Hi (G, Zy) ®q, Bar- (1.42)
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Beilinson performs this verification explicitly by computing the relevant cohomology theories, before

exploiting de Jong’s alteration techniques [5] to generalize prove the theorem in full generality.
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Chapter 2

Spectral sequences and Filtrations

We will conclude by approaching this problem from a slightly different angle. In the last chapter
we described the derived de Rham cohomology of varieties over p-adic fields, but we did not provide
a practical means of actually computing this cohomology, nor of computing algebraic de Rham
cohomology. Work by Bhatt [3] has more or less cracked the problem of computing the algebraic
de Rham cohomology of algebraic varieties in characteristic 0, but there is some interesting work
left to do in understanding the structure of the filtrations and spectral sequences that arise in this

direction.

2.1 Complex manifolds

We will first recall some facts about the Hodge-to-de-Rham spectral sequence (also called the
Frélicher spectral sequence), used to compute the usual de Rham cohomology of complex mani-
folds. For a more detailed treatment of this subject, refer to [21]. Let X be a complex manifold

with de Rham complex Q5% . Then the Poincaré lemma [2| says that the sequence
0-C—0, 0% —... (2.1)

is exact, so that the de Rham cohomology is trivial over contractible open subsets. This induces an
isomorphism

H™(X,C) = H'(X, Qy) = Hin(X), (2.2)

where H" (X, 0y denotes the hypercohomology of the complex Q%. Recall also the naive filtration

on Q%, the filtration obtained by setting F'Q% := Q%' and note that the ith graded piece gri’ Q%
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is isomorphic to Q%, shifted by p. This yields the Hodge-to-de-Rham spectral sequence with first
page EV? = HI(X,0%) = HY!9(X). The induced descending filtration H’(X) = FO O F' D

... D Fntl = 0 is the Hodge filtration. One of the culminating results of classical Hodge theory is

Theorem 10. Let X be a compact Kdhler manifold. Then the Hodge-to-de-Rham spectral sequence

of X degenerates at .

A few remarks on this theorem: the degeneracy of the Hodge-to-de-Rham spectral sequence at

the E page is equivalent to the fact that
FPH*(X,C)/FP H*(X,C) = H(X, Q%

and also to the fact that

dim H*(X,C) = ) (dim HI(X,0%).
ptg=k

One might hope, then, that degeneracy of this spectral sequence at E; for any complex manifold
X would imply the existence of a Hodge decomposition as in [I.2| or, even more optimistically, the
existence of a Kéahler form on X. Unfortunately, neither of these are the case — degeneracy of the
Hodge-to-de-Rham spectral sequence at E; is a strictly weaker condition than K&hler-ness [21].

It is actually possible to apply Serre’s GAGA principle here to give an “algebraic analogue” of
the above picture. Rather than sheaves of holomorphic differential forms over a complex manifold
X with the usual complex topology, we may consider sheaves of algebraic differential forms over
X equipped with the Zariski topology, and the de Rham complex of coherent sheaves (i.e. finitely
presented O;gg—modules in the Zariski topology which are, importantly, locally free) on X. Then
Serre’s GAGA principle ensures that these two spectral sequences degenerate together. That is,
degeneracy at E; of the Hodge-to-de-Rham spectral sequence of the de Rham complex holds if and
only if degeneration at F; of the algebraic Hodge-to-de-Rham spectral sequence holds. As discussed
earlier, due to the lack of an algebraic Poincaré lemma, the algebraic de Rham complex is not at all
locally exact in the Zariski topology, in contrast to the situation for the ordinary de Rham complex
[?]. This lack of an algebraic Poincaré lemma was precisely what led us to turn to the p-adic setting
for constructing an appropriate comparison isomorphism. We will make the same move here; the

existence of a p-adic Poincaré lemma also gives us more freedom when working over p-adic fields.
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2.2 The singular case

The usual Hodge-to-de-Rham spectral sequence is useful insofar as it allows us to easily compute
the de Rham cohomology, hence the Betti cohomology, of smooth complex varieties. However, these
cohomology theories do not necessarily coincide in the case of singular varieties X over arbitrary
fields k of characteristic 0, as the space Qﬁ( Jk is not locally free near singularities. Hartshorne’s
algebraic de Rham cohomology [11] is the natural analog. Let Y — X be a closed immersion of an
embeddable scheme Y into a smooth scheme X over k. Then the algebraic de Rham cohomology of

Y is the hypercohomology of the formal completion of Q% /k along Y. That is,
MR (Y) = HY(X, Q% ). (2.3)

Furthermore, this definition is independent of the choice of embedding and the cohomology is a
contravariant functor in Y. Illusie [13] showed that this algebraic cohomology theory coincides with
the derived de Rham cohomology defined by the cotangent complex for varieties with lci singularities,
i.e. for which the local ring at every point is a complete intersection ring. More recently, Bhatt [3]

generalized this result to any finite type morphism of noetherian Q-schemes:

Theorem 11 (Bhatt). The Hodge-completed derived de Rham cohomology of any finite type mor-
phism of noetherian Q-schemes is canonically isomorphic to Hartshorne’s algebraic de Rham coho-

mology (ignoring filtrations).
Proof. See [3]. O

Recall that the Q-schemes are those for which the residue field at any point z € X is characteristic
0, so indeed this is quite a bit more general than Illusie’s result. As we shall outline in what
follows, the Hodge filtration on the derived de Rham cohomology induces a filtration on the algebraic
cohomology, which allow us to define the derived Hodge-to-de-Rham spectral sequence to compute
algebraic de Rham cohomology for noetherian ()-schemes. This theorem shows that several terms
in this spectral sequence do not vanish, and in particular that it does not necessarily degenerate on
the E; page.

We sketch the construction of the algebraic de Rham complex. Following Bhatt, we will provide
the affine picture — for more on its globalization to an arbitrary variety over k, see [3]. Let f : A — B
is a finite map of noetherian Q-algebras and F — B is a presentation of B, where F' is a finitely

generated polynomial A-algebra (here, a polynomial A-algebra is meant to be an A-algebra A[X;];cr
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in indeterminates {X;}). Then the (affine) algebraic de Rham complex, written Q2 /> 18 defined as

where F is the formal completion of F' along I = ker(F — A). This definition is independent of the
choice of F. In this language, we have the following, more precise version of Theorem also due

to Bhatt [3]:

Corollary 3. Let f : X — Y be a finite type map of noetherian Q-schemes, and assume that
X can be realized as a closed subscheme of a smooth Y -scheme. Then there is a natural filtered
f~YOy -algebra map

O H
LQX/Y — QX/Y
that is an equivalence of the underlying algebras.

As a consequence of this theorem, the problem of computing algebraic de Rham cohomology in
characteristic 0 is almonst eliminated. In the same paper, Bhatt shows that the algebraic de Rham
cohomology can be computed by the completed Amitsur complex for any variety in characteristic 0

The filtration on the target is the derived Hodge filtration, induced by the Hodge filtration on
the derived de Rham algebra. The derived Hodge filtration yields a spectral sequence interpolating

between the derived de Rham cohomology and the algebraic cohomology, with first page
EPY: HY(X, APLxy,) = HPY(X, Q% ).

While this spectral sequence isn’t of interest computationally, it is still interesting to compare the de-
rived Hodge filtration with the infinitesimal Hodge filtration or Hodge-Deligne filtrations on derived

de Rham cohomology. We have the following proposition, from the same paper.

Proposition 8. Let X be a finite type k-scheme. There are natural maps
aﬁXﬂc = Q)fg/k > Q;(/k = Q}/k

of filtered complexes such that a,cob, and coboa induce an equivalence on the underlying complezes.

In particular, the algebraic de Rham cohomology of X is a summand of the cohomology of Qﬁ(/k.

Here QY /,is the Deligne-De Bois Complex, defined in [3]

There are several questions still open in this direction. Of particular interest to me is understand-
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ing the precise structure of “cancellation” in the derived Hodge-to-de-Rham spectral sequence. That
is, though the cohomology of the derived de Rham complex is unbounded in dimension, Theorem
implies that the cohomology of the total complex is finite [3], so there is nontrivial cancellation
occurring throughout the spectral sequence. Possible future work includes computing several pages

of these sequences explicitly to gain a greater understanding of this cancellation behavior.
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